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Hard and soft multifractal processes 
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We show that multifractal notions encompass a wider variety of phenomena than often 
believed. Ranked by increasing highest order of singularities we have geometric, then 
microcanonical and finally canonical multifractals. They are respectively localized and 
"calm", delocalized and "calm", and delocalized and "wild". Canonical multifractals may 
also involve rare violent ("hard") singularities which cause high order statistical moments to 
diverge. We demonstrate this classification in the framework of universal multifractals 
characterized by three fundamental exponents. 

1. Introduction 

In strange attractors [1, 2], turbulence [3, 4], statistical physics [5, 6], high 
energy physics [7], astrophysics and geophysics [8] we are confronted with 
infinite hierarchies of dimensions and multifractal statistics rather than unique 
fractal dimensions and fractal geometry.  There is an increasingly widespread 
(and complacent)  view that multifractals are so ubiquitous and have been so 
well studied that the unification of scaling notions has already been achieved: 
all that is needed is the (positive) fractal dimension ( f )  as a function of the 
order  of singularity (a) .  Unfortunately,  this standard theoretical f ramework 
and the corresponding empirical studies presuppose very restrictive calmness 
and regularity assumptions. It has therefore become a matter  of some urgency 
to reveal the full diversity of multifractality. Below, we show that extremely 
wild but rare singularities exist. They can lead to a "ha rd"  behavior, which is 
fundamental  but nevertheless outside the scope of the usual discussions. In the 
course of the development  these hard/soft ,  wild/calm notions will be made 
quite precise and will serve as a basis for classifying multifractals. 

2. Basic properties of multifractal fields 

We consider the (generic) case of stochastic multifractal processes (e.g. 
turbulent  cascades) produced by random multiplicative modulation of larger 
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structures into smaller ones yielding a highly intermittent field e (e.g. density of 
the energy flux in turbulence) on space/time. Note that each realization of such 
a field corresponds to a finite dimensional cut of a process in an infinite 
dimensional probability space. The multiple scaling behavior of this field e A at 
scale ratio A ( = L / l ,  the ratio of the largest scale L to the scale l) can be either 
characterized by its probability distribution or by the corresponding law for the 
statistical moments (via a Laplace transform): 

Pr(e, /> A r) ~ A -~C~) , (1) 

( Eq ) ~ 1~ K(q) ~ f ~ qy/~ -c(y ) d c ( 7  ) .  (2) 

Here and below the ~ sign means equality within slowly varying and constant 
factors (negative d c / d y  correspond to reverse inequality in eq. (1)). In eq. (1) 
the statistical exponent c(7)  is a codimension since the probability measures 
the fraction of the probability space occupied by the singularities exceeding the 
order y. At scale ratio A, it can be estimated as the ratio of the number 
(N, (7) )  of corresponding structures to the total number of structures (Nv): 

Pr(G/> A ~) ~ N A ( y ) / N  A . (3) 

c (y )  also has a geometrical interpretation over a D-dimensional observing set 
A whenever D/> c(y) .  In this case, not only Na ~ h D, but also, on almost any 
realization, N~(y) ~ h D(v), with a positive D(7)  which is then a usual geomet- 
ric fractal dimension. This geometric interpretation corresponds to the (restric- 
tive) starting point of the considerations of Parisi and Frisch [4]. "Wild" 
singularities, as defined below, are outside of this geometrical framework. 
Now, we can consider D-dimensional integration over A: 

HA(A) = f G dDx, (4) 
A 

corresponding to the energy flux (turbulence) or the multiffactal probability 
(strange attractors). Hx also has multiple scaling behavior corresponding to the 
usual multifractal measure exponents a,  f,  z, but there is a D dependence 
(rendered explicit by the subscript " D " )  

Pr(//A(B~) >/A-~o) = h r,~(~o)/h D ' a D = D - y ,  f D ( a D ) = D - - c ( y ) ,  
(5) 

on a ball B~ of size L / A .  The D-dimensional integration merely smooths the 
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Fig. 1. A schematic comparison of the intrinsic (absolute) representation (y, c) of the singularities 
of the density e vs. their (relative) D-dimensional counterparts (a o, fo) for the D-dimensional 
integral H, obtained by turning the diagram upside down and shifting the origin along the bisectrix 
as shown. 

singularities of the density e,, linearly shifting their order (see fig. 1). 
Generalizing the partition function used in strange attractors, the "trace 
moment" [9] combines ensemble with spatial averaging, 

WrA t~q=(~A (6xA-D)q)~'(~i Flx(B~,i)q I ,  (6) 

where the sum over A is done at resolution A, i.e. on a (more or less optimal) 
covering of N~(A) ~-/~D balls Bx.i: 

Tr A eA q -~ A to (q )  , t o ( q )  = ( q  - 1)D - K ( q ) .  (7) 

While the intrinsic quantities y, c ( y ) ,  K(q) are independent of the dimen- 
sion D of the observing space A, unfortunately a o ,  fD(aO) ,  7 o ( q )  diverge as 
we increasingly explore the infinite dimensional probability space (D--~oo). 
One may note that this turbulence notation avoids also artificial problems of 
negative dimensions ("latent dimensions" [10]), which occur for "wild" singu- 
larities (see below). Just as f ( a )  is the Legendre transform [4, 2] of T(q), so 
c (y)  is the transform of K(q): 

K ( q )  = m a x  [ q y  - c (y ) ] ,  c ( y )  = mqaX [ q y  - K(q)] .  (8) 

These relations establish a one to one correspondence between orders of 
singularities and moments (q = c ' (y ) ,  y = K'(q)). The fact that Laplace trans- 
form (between probabilities and moments) reduces to the Legendre transform 
(for the exponents) is a consequence of the saddle point approximation, 
generally valid in the large A limit. However, the Legendre transform only 
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yields the exponential part of the probability distribution, missing logarithmic 
factors particularly important for universal multifractals (see below) with 
parameter  a < 2. 

3. Classification of  multifractal fields 

Since convexity is preserved by Legendre transforms c(3,) is convex as is 
K(q)  (which is the base h Laplace second characteristic function [11, 12]) of 
log e a. c(7)  admits a fixed point (7 = C~) simultaneously corresponding to the 
mean singularities and their codimension, since C1 = c(C~) corresponds to 
q = c'(C~)= 1, which shows also that C 1 = K'(1). If C 1 > D, the mean is so 
sparse that on the observing space, the process is almost surely almost 
everywhere zero, it is "degenerate" ,  hence we require C 1 ~< D. These features 
can be seen in fig. 2. 

As (~t xqt) 1/q is a decreasing function of q we have a Jensen inequality [9] 

q<~<HA(A)q> q > ~ l "  T r  A e a , , (9) 

hence, using eq. (7) we may define the critical order of moment qo by 
K ( q o )  = D(q  o - 1 ) :  ( H ~ ( m ) q >  "-'-> o0 for all q >/qo (>1).  Introducing the dual 

/ LOCALISAT1ON 

-Ci y 

Fig. 2. Phase diagram showing the attainable singularities for a multifractal observed on a space 
d imens ion  D. It shows the mean  singularity (C 1 = c(C 1 )), the m a x i m u m  singularities of  geometrical  
multifractals 3"~x ( = c  ~(D)), and microcanonical multifractals 3'~m]x ( = D ) .  Wild singularities 
(3' ~> Y~=~) violate microcanonical  conservation.  Hard  singularities (3' > 3"o > Y(mm~x) cause diver- 
gence of high order  statistical moments .  The  bonding curves are the two extreme universal cases 
(~ = 0, 2). 
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codimension C(q) -- K ( q ) / ( q  - 1), which is the slope of the chord connecting 
the points (1, 0) and (q,  K(q)),  qo corresponds to the (critical) chord having 
slope C(qo)  = D, qth order moments diverge as soon as C(q)>~ D. Note that 
the general relation between r o and K (eq. (7)) no longer holds as soon as 

q ~ q o .  
This "hard"  behavior is at first sight surprising because if we consider 

ea.o = / /~ (Ba) /Vol (Bx)  as an estimate of e~ over the ball B~; the two will 
therefore have totally different statistical properties: 

( e q ) < ~ ,  a l l q ,  (E qA,D)=O0 , q>~ qo ( > 1 ) .  (10) 

This difference between the properties of the cascade constructed down to 
scale A, and that of a coupled cascade integrated (smoothed) over the same 
scale, prompted us [9] to denote the two quantities "bare"  e a and "dressed" 
ea,o respectively. One may note that the singular statistics (of dressed quan- 
tities) has been taken as a basic feature of self-organized criticality [13]. Not 
too surprisingly, the "hard"  singularities, which are responsible for this diver- 
gence, also break the microcanonical conservation of the flux (H)  (i.e. 
conservation on individual realizations). Indeed, D is the upper bound of the 
"calm" singularities (3' ~< " ) / %  = D, the superscript m corresponding to "mi- 
crocanonical") respecting the microcanonical conservation. This bound must 

(m) 
satisfy: H A I> A-vA.'/maxH1. It is reached only for the extreme case in which for 
each step all the density of the flux is concentrated on a single subeddy (of 
volume A-°) .  3,(mma)x is smaller than the critical order 3,0 (=K' (qo) )  of hard 
singularities (3' ~> 3,o), since 3,0 ~> C(qo) = D due to the convexity of K(q) (at 
point (qo ,  K(qD)) the tangent is steeper than the chord connecting it to the 
point (1, 0)). The width of the interval of 'soft" (3, < 3,o) but "wild" singu- 
larities (3, > 3,~mm~)x) is: 3,O -- 3,{mm~)x = K'(qo)  - D = (qo - 1)C'(qo) > D (since 
q o > l ,  C' >0 ) .  

Conversely, if for any reason, the orders of singularities are bounded above 
by 3,max (C(3,) = 0% y > 3,max) the divergence will be suppressed (except when 
3,0 < 3,max), and the corresponding multifractals will be "soft".  For 3,max < 
~/mm~)x = D, they will be soft and calm. This is exactly the situation in the two 
most popular varieties of multifractals: the microcanonical multifractals [14-16] 
just discussed, and the geometric multifractals [4]. In the latter, there is no 
stochastic process, no probability space, the singularities are merely distributed 
over geometrical sets whose largest codimension is therefore equal to that of 
the embedding space (geometric sets cannot have negative dimensions). We 
therefore obtain 3,{g) = c - l ( D ) < -  (m) max "Y max (fig" 2), confirming that microcanonical 
variability can be more extreme. 
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4. Phase transitions and delocalization 

A consequence of bounded singularities is the existence of a (possibly 
infinite) moment order qmax (=C'(~/max)), for which the Legendre transform 
indicates that K(q) becomes linear: K(q)= q'Ymax- C(Tmax) for q > qmax and 
C(q)  ~< C(o~) = 3'max < o~. One may note that an analogous behavior occurs for 
multifractals with singularities bounded below [17]. The (non-analytical) transi- 
tion to straight line behavior for q > qmax (when finite) can be considered a 
phase transition [6, 7, 18, 19] (also ref. [20] for a "flux dynamics" formulation 
of turbulent cascades): the multifractal free-energy analogue C(q) remains 
"frozen" (a second order transition). The spurious scaling arising from under- 
sampling [19, 21] may lead to underestimate the order of occurrence of the 
phase transition-like discontinuities. Indeed a (finite) number of samples (Ns) 
may introduce an effective bound of singularity Ys < 3~max and a corresponding 
qs < qmax" With help of the "sampling dimension" [20, 21] D~, N S = A-°s, we 
can estimate 3'~: 7,~ ~ c- I (D + D~). However, harder spurious scaling arises also 
from divergence of moments [3] for unbounded singularities (Tmax = o~). This 
latter case corresponds to a harder phase transition: C(q) does not remain 
frozen, C ' (q)  has jumps (a first order transition) whose amplitudes depend on 
the sample size. As developed and discussed elsewhere, the jump is roughly: 

AC'( qo) ~ Ds/ qD( q o -- 1). 
Another  distinctive feature of random multifractal processes is that contrary 

to geometric multifractals, their singularities are generally not localized. Con- 
sider an "incipient" singularity about a point x: 7 , (x)=  log eA(x)/log A, com- 
plete localization is obtained when 7(x) = l i m , ~ A ( x  ) is well defined. Localiza- 
tion is usually simply assumed without any justification; this is the source of 
many difficulties [20] with existing multifractal analysis techniques (such as 
wavelet analysis). In random processes, 7A(x) will follow a random walk as A is 
increased not converging (generally) to any limit. Nonetheless, at any scale h 
the (non-local) histogram [9] of the incipient singularities, eq. (1), still holds. 
Obviously, harder and harder singularities are more and more delocalized. 

5. Hard and soft universal multifractals 

An important type of multifractals are the universal multiffactals [9] ob- 
tained by densification- or more generally by mix ing-  of identical indepen- 
dent multiplicative processes [22]. When the mean flux is conserved, they are 
prescribed by only two basic exponents, which define the infinite hierarchies of 
singularities and dimensions: the mean singularities and their codimension C 1 
measures the mean inhomogeneity, a (0 < a < 2) measures the deviation from 
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monofractality (the curvature radius of c(3") at 3' = CI is R e = 22/3a) and is 
precisely the L6vy index of the generator of the process. The corresponding 
universal K(q)  and c(3") are (only for c ' >  0 when a < 2 )  

C10t  p 
K(q)  = a (qa q) a ~ 1 K(q)  = Clqlog(q)  a - -  1 (11) 

1) ) 
= a ' ,  a ~ l ,  c (3")=C l exp  - 1  , a = l ,  

(12) 

with 1/a + 1 / a '  = 1. 

The two extreme universal cases are the monofractal /J-model  (a = 0) and 
lognormal model (a = 2), which bound (an application of eq. (11) has led to a 
questionable value a ~ 2.3 (>2!)  for hadron jets [23], more recently ref. [24] 
points out 0.4 ~< a ~< 0.75) the attainable singularities in fig. 2. Eqs. (11), (12) 
show that for a />  1, C(~) = ')/max = ~; hence the processes are "unconditionally 
hard"  (hard for any D) ,  whereas for a < l ,  C(~)=  3"max = C 1 / ( 1 - a ) < ~  
(although qmax = ~ ) ,  hence these multifractals are "conditionally soft" (soft for 

D > 3"max). 

6. Conclusions 

The wide variety of multifractals processes can be classified from very soft to 
hard. In the case of universal multifractal processes, this characterization is 
particularly powerful since it is entirely deduced from the behavior near the 
mean. This is already the basis of the robust analysis techniques [25], as well as 
of simulations [9, 22, 26]. For instance, evidence of the divergence of various 
moments of turbulent atmospheric quantities has suggested for several years 
that turbulence really is hard; recent works shows it is unconditionally so with 
a ~ 1.3 [27]. On the contrary rain time series exhibit conditionally soft 
behavior with a ~ 0.5 [28]. 

These results have fundamental implications for the understanding of non- 
linear processes (e.g. fully developed turbulence) since it characterizes the en- 
tire class of the admissible solutions of the corresponding nonlinear equations. 
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