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Abstract. A new stochastic approach to intermittency in
high energy physics is proposed. It yields to intermittency
exponents defined independently of phase-space dimen-
sions; their role in the calculation of generalized moments
is discussed. A straightforward application of universal
multifractals is suggested and a new parametric technique
for phase-space analysis is provided.

1 Introduction

The idea of scaling and self-similarity, used in the invest-
igation of strange attractors and of turbulent phenomena
since the late seventies [1-6], has recently found fruitful
applications in the area of high energy physics. Although
the concept of self-similarity in multiparticle production
was not new [7—11], the papers by Bialas and Peschanski
in 1986 [12] and 1988 [13] and by Hwa in 1990 [14], have
provided practical tools to verify and survey the scaling
properties of particle distributions in phase-space, raising
a new experimental and theoretical interest in the subject.
Both approaches attempted to seek the existence of
power-law behaviours for statistical moments of the par-
ticle production process as already found to hold for
multifractal cascades generated by multiplicative models
of intermittency [1-6].

Bialas and Peschanski suggest that in the “spiky”
pseudorapidity distributions observed in some high-energy
experiments [15, 16] statistical fluctuations might hide dy-
namical intermittent patterns. Assuming the statistical noise
to be Bernoullian or Poissonian [12, 13], they show how to
operate a deconvolution. To get the true normalized statist-
ical moments of a single event pseudorapidity distribution,
they suggest measuring the space average of the normalized
factorial moments of order g, given by:
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/ (the resolution) being the number of bins in which the
pseudorapidity interval is divided; k,, and N being the bin
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multiplicity and the event multiplicity respectively. They
suggest testing the power law:
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predicted by a particular multiplicative cascade model
[12] derived in analogy with existing models of turbulence
[1-6].

The parameters f, were called intermittency exponents
and taken as a measure of the strength of the intermit-
tency effect. The extension of this method, devised for
a single event, to a sample of events of different multiplic-
ities is done by simply averaging over the sample, with
a slightly different normalization:
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where ¢ > indicates the average over the whole sample
(ensemble average).

Hwa on the other hand, tries to apply the strange
attractor formalism to multiparticle production by intro-
ducing the generalized moments of order g, which, at
resolution A, are defined as:
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where the sum runs only over the non empty bins. The
author suggests testing the power law:

G ocA™™@ (5)

The strange attractor formalism can then be exploited to
find a “spectrum” of the singularity dimensions /() and
the moment dimension spectrum D(q) defined in [5, 14]*.
As we shall see, both factorial and generalized moment
techniques are appropriate to a geometrical multifractals
environment. In both techniques the influence of the event

* g has nothing to do with the degree of multifractality introduced
in Sect. 8. We used it here only in coherence with the notation of
[14]. See Table 1 for the comparison of the two languages
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sample size on the range of reliable estimates of the multi-
fractal features is difficult to evaluate,

In this paper a more general approach to study inter-
mittency of phase-space distributions is presented, ad-
opting the stochastic formalism developed by Schertzer
and Lovejoy [17] to deal with the onset of turbulence. The
advantages offered by the new stochastic method over the
geometrical multifractal approach are evaluated.

In certain cases, the concept of multifractality was
introduced in a geometrical context because of the need to
characterize, through the fractal dimension, the (possibly)
different scaling relations of an inhomogeneus phenom-
enon, However, although embracing a wide class of multi-
fractals, this geometrical connotation is limited. In fact, in
a geometrical case, all fractal dimensions (and codimen-
sions) do not exceed the euclidean dimension D of the
support space. On the contrary, in a srochastic environ-
ment, infinite dimensional probability spaces are avail-
able, without limitations on the dimension spectrum and
therefore on the orders of singularity. They allow for the
existence of much more violent fluctuations and rarer
events.

Problems with F, (3) and G, (4) arise from the fact that
possible strong fluctuations at the highest inaccessible
resolutions, as well as small scale resummation effects
(“hard” behaviour) are not accounted for, while it is now
clear that the description of the phenomenon at large scale
cannot be divorced from the structure of the phenomenon
at the microscopical scale. This corresponds to a first
order phase transition analog [18], which will be dis-
cussed below in Sect. 6.

2 Multiscaling of probability distributions

Generalizing from a “pedagogical” multiplicative cascade
model (called the “z-model”) Schertzer and Lovejoy [17]
derived the following probability scaling law for multi-
fractal fields:

Pr(e; > A7) oc A=), (6)

Each value of the field ¢;, at resolution 2, corresponds to
a singularity of order y and its probability distribution is
fully determined by the codimension function ¢(y). The
latter is independent of the dimension of the support
space; it is a convex increasing function of y (the larger the
singularities, the rarer their occurrence), with a fixed point
Cqi: elCy)=Cy. In Fig. 1a an example of codimension
function ¢(y) for conservative fields (see below) is shown.

The codimension function e(y) is a “statistical” expo-
nent, nonetheless it may be given a geometrical interpreta-
tion whenever ¢(y) is less than the euclidean dimension
D of the embedding space. In fact, one can then define the
(positive) dimension function:

D(y)=D—c(y), (7)

D(y) corresponding to the fractal dimension of the support
of the phenomenon which shows singularities greater
than y. This interpretation can, in principle, be useful in
data analysis. Consider for instance the rapidity distribu-
tion of a sample of N, events, regarded as statistically

c(7)
M
|
H
;
c 7
_-_._'_-_.-l-"
C p ¥
a
exireme suenls
K(a)t
b O 1 q

Fig. 1a, b. Example of codimension function a and moment scaling
function b

independent “realizations” of the same stochastic process.
A single event (dimension-D) will allow the exploration of
structures having dimension D(y) between 0 and D; struc-
tures with ¢(y)> D (corresponding to impossible negative
values of D(y)) will be too sparse to be observed and
almost certainly they will not be present in a single realiz-
ation [19]. To investigate them, a “large” number of
events (realizations) is needed. For reasons discussed in
the next section, singularities below the dimension D of
the space are called calm, singularities exceeding D are
called wild [20].

The accessible range of singularities, given a sample of
N, events, can be easily estimated. Suppose we observe the
process embedded in a space, dimension D, at some res-
olution A; by using (6) to guess the maximum order of
singularity y,, observed at least once, one can write:

1~ N AP Pr(g; = AVs)~ N AP L el (8)
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By defining the sampling dimension D.:

log N,

=N, D=-E= ©)
log A

we get the following simple relation:

cly)=D+D,, (10)

Thus, the larger the sampling dimension D, (ie. the
larger the number of independent realizations used),
the wider the spectrum of accessible values of y. Formula
(10) provides a clear indication of the effect introduced
by the sample-size on the upper bound of the singularities
that can be spanned by a given analysis. For instance,
using only the one-dimensional distribution of one event,
say the pseudo-rapidity distribution of the JACEE event
[15], we can reach at the most singularities of codimen-
sion one, By increasing the sample size we can go
beyond this limit. It is worth noticing that the attainable
limit of ¢(y) increases logarithmically with N,. Further-
more, due to the convexity of ¢(y), y, grows more slowly
than log N,.

A detailed description of a procedure, called probabil-
ity distribution multiple scaling (PDMS) technique, to dir-
ectly evaluate the codimension function ¢(y) for a sample
of events can be found in [21-23]. An application to
rapidity and pseudorapidity distributions of secondary
particles is reported in [19], where ¢, is defined as: &,,/N,
N being the number of event used.

It is however “strictly” improper to apply PDMS to
particle production since A* cannot run continuously in
the available range. In fact the number of particles per bin
varies only by integer values. As a consequence A* will
show discontinuitics,

However, in order to estimate ¢(y) the slope is needed,
instead of the absolute value of Pr, therefore the discon-
tinuities are somewhat ineffective.

3 Features of the singularities

There are singularities that cannot be handled by the
traditional moments (3, 4), born within the framework of
geometrical multifractals*,

In those multifractals, singularities are localized and
their sparseness is limited by the dimension D of the
support space; hence y takes at most the value y,, solution
of the equation:

C(}IQ)ZD. (I])

On the contrary, in microcanonical multifractals (i.e. pro-
cesses involving conservation of the field density in each
individual realization of the process) the singularities are
delocalized, although their sparseness is still limited by the
dimension D of the embedding space. Considering the
extreme microcanonical process (involving (A7 —1) zeroes
and a single value A7), microcanonical conservation leads

* The following multifractal classification is discussed in more de-
tails in [20]
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Fig. 2a, b. Schematic diagram showing the classification of (nor-
malized) multifractal processes in terms of the codimension function
behaviour a and in terms of the moment behaviour b. The super-
script “G” and “M" indicate, respectively, “gcometrical” multifrac-
tals and “microcanonical” cascades

to the condition A" A~ " =1, and to an extreme singularity
order:

Ym=D. (12)

The limit is not on the value of the codimension function
¢(y), but rather on the value of its argument, i.e. the value
of the singularity order. Hence geometrical and micro-
canonical multifractals involve only calm singularities.
The occurrence of wild singularities is possible in ca-
nonical multifractals in which conservation within a real-
ization is replaced by the much less restrictive ensemble
conservation of field density. The singularities with y> D
are called wild, because they necessarily violate micro-
canonical conservation, Tt is also possible to obtain
grandcanonical statistics by considering the properties of
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canonical cascades on random (e.g. fractal) subspaces.
A classification diagram for multifractal processes accord-
ing to the behaviour of their codimension function is
visualized in Fig. 2a.

4 Multiscaling of statistical moments

It is important at this point to investigate and discuss how
the different moments might scale. Under fairly general
conditions the knowledge of the probability distribution
of a random variable is equivalent to the knowledge of all
its moments. Letting g be their order, Schertzer and
Lovejoy [17] introduced the moment scaling function
K(g) to characterize the scaling of the moments:

(ely=1K@ (13)

which is also independent of the dimension D of the
support space since g, is the density of a multifractal
measure. It can be shown that K(g) and c(y) are related by
two Légendre Transforms [6]:

K(g)=max{gy—c(y)}
c(y)=max{qy—K(q)} (14)

which establish a one-to-one correspondence between
v and q. The order of moment ¢ is strictly related to the
order of singularity v (and viceversa): g=c'(y); y=K'(q).
Furthermore, it can be shown that K(g) is convex. In
addition K(0)=K(1)=0.

An example of moment scaling function K(g) is shown
in Fig. 1b, while Fig. 2b displays the multifractal classifica-
tion in terms of moment scaling function and translates
into moment space the classification given in probability
space (Fig. 2a).

The maximum order of moment ¢, accessible with
a sample of N events can be evaluated through g,=¢'(y,).
Since the maximum value y, depends upon sample size N,
its calculation provides an estimate of the maximum order
of moments g,. This accounts only for “undersampling”
effects but it is not enough. In order to discuss the role
played by the moments in multifractal analysis we have to
discuss how the integration performed at a finite resolu-
tion is affected by hard fluctuations occurring at finer
resolutions: they lead to the divergence of statistical mo-
ments of larger scale, since they are too violent to be
smoothed out by the integration (averaging) process.

It is significant to realize that the statistical properties
of a multifractal field at a finite resolution A-or equiva-
lently the behaviour of ¢(y) or K(g)-crucially depend
upon the way in which the field has been generated. One
can distinguish between bare and dressed properties [17].
Bare properties apply to multifractals obtained by devel-
oping a cascade down to resolution A (i.e. no resum-
ming/integration performed). Dressed properties apply to
fields generated (e.g.) by integration, at finite resolution 2,
of fully developed cascades (1—c0). An intermediate class
of finitely-dressed multifractals is obtained (e.g.) by integ-
rating cascades developed down to resolution A at some
resolution A< A. Therefore, bare quantities are affected
only by the behaviour of the field at resolution smaller
than A. It is exactly the hard behaviour of multifractals

fields at “small” scales (large resolution) that introduces
a basic difference between bare and dressed properties.

A typical dressed quantity is the flux of a multifractal
field & through a subset B; (a ball or cube of volume 1~ P)
of the D-dimensional support space defined as:

I1,.5(B,)= I g4d”x (15)
B,
(dPx stands for the D-dimensional Hausdorfl operator).

In the case of a rapidity distribution of secondary
particles, considered on a grid having A bins we may
identify the flux through the m-th bin with the estimated
particle density k,,/N.

It is possible to find an estimator which is able to give
direct evidence for the divergence of the usual statistical
moments. This is a new dressed quantity, the trace moment
of order ¢ proposed by Schertzer and Lovejoy in 1987
[17], which generalizes the “partition function approach”
used in strange attractors by ensemble averaging (some-
times called “superaveraging” [17]).

5 Scaling of trace moments

Let us consider a (bare) field &4, resolution A, over a sup-
port set A covered by disjoint boxes B,, resolution A. The
trace moment (TM) of order g is obtained by summing,
over each individual realization, the g-th power of the
fluxes through the boxes B,’s (space average) and then by
averaging over all the available realizations (ensemble
average), i.e.:

TrA;(EA)q=<Z|:HA{Bi)]q>- (16)
A
The trace moments are defined for every positive g and
can be shown to be smaller (larger) than the usual statist-
ical moments {I14(4)> when ¢>1 (g<1).

Furthermore, the following scaling relation [17] can
easily be obtained:

TrA;.(SA)q:;LK(q)—(q—IID_ (17}
If we define the critical exponent g, through the equation:
Clgp)=D (18)

and the dual codimension function C(q)=K(q)/(g—1)—an
increasing function —formula (17) reads:

TTAA(BA)‘I=1(‘I— NACig) - D) (19)

Thus the trace moments diverge when ¢> 1, for C(g)>D
and when g <1, for C(g) <D. This implies* that the usual
statistical moments of fluxes may be not measurable for all
orders.

When g <gp (Clgp) < D) the statistical moments are
determined at large scale and there is no significant differ-
ence between bare and dressed quantities; when ¢>gy
(C(gp)> D) moments of order g are strongly dependent

* This is due to Jensen's inequality between the trace moment and
the moment of the flux [17]. For g >1: {IH(A)) > Tr9 (¢e;)



upon small scale phenomena and are no more macro-
scopically determined.

When the dual codimension function C{g) has an
upper limit, i.e. if C(oc)=lim,_, . C(g) < + o, multifractals
are said to be conditionally hard, otherwise they are called
unconditionally hard. With conditionally hard multifrac-
tals, all orders of moments will converge, as soon as
D> (). Dressed multifractals integrated over spaces
with D> C(o0) are said to be sofi.

If we consider the singularity corresponding to gp (i.e.
vp=K'(qp)) we find that y, > D; hence the hard singular-
ities (y>7yp), responsible for the divergence of moments
are also wild. Since, by definition, geometrical and micro-
canonical multifractals exclude wild singularities, they are
always soft. For the more general canonical multifractals,
wild singularities can be a problem and it is advisable to
integrate the realization over a support of the largest
available dimension.

6 Phase transitions in multifractal processes

It has recently been realized [18,22] that phase
transition-like discontinuities in the derivatives of the
function C(gq)=K{(q)/(g— 1) can be wilder than previously
expected (those phase transitions are produced in a gen-
eric scaling way, contrary to previous [24] hypotheses of
scale breaking). Let us consider in fact the function C(g)
determined from a finite sample (note that C(g) can be
regarded as the “multifractal free energy” function, in
analogy with thermodynamics). Since g,=c'(y;) is the
maximum order of moment that can be reliably estimated
due to finite sample-size, we obtain (via Légendre Trans-
form) a “spurious” linear evaluation of K, instead of the
non linear K for g >g,:

K (g)=vq—q,)+ K(gs) (20)

and hence there is a jump in the second derivative of C(g)
(i.e. a second order transition):

Kilg)—K"(g) _—K"(4;)

AC"(g5)=
Qs_l ffs_l

21)

Furthermore, we can show that another more violent first
order transition may occur when the sample size (ie. the
sampling dimension D,) is large enough so that ¢,>gp, L.e.
the “hidden” hard behaviour becomes visible. We obtain,
by using definition (10):

g{q —qp)(4:/9p)

Clg) 1

(22)

for A,~D,> D, which is an improvement with respect to
previous papers [17]. Hence there is a jump in the first
derivative of C roughly given by:

D
AC (gp) > ——— 23
() dp(gp—1) @)

i.e. a first order phase transition. We stress however that
such effect will be visible only for extremely large sample-
sizes.
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Table 1. Comparison between notations used in strange attractor
formalism [6] and turbulence formalism [17]

Quantity Strange Turbulence
attractors (density of
{measures) measures)

Probability/flux P H(4)={,ed"x

Singularity order - D—y

Singularity dimension folop) D—c(y)

Moment order g q

Moment dimension Dig) D—Cl(g)

Scaling exponents —1p{q) K{g)—(g—1)}D

7 Comparison between strange attractor
and turbulence formalisms

It is worth pointing out that the trace moments given by
(16) coincide with the generalized moments (4) introduced
by Hwa in 1990. In fact formula (16), due to definition (15),
when applied to a rapidity distribution (D=1) simply
leads to:

kom
TrAA{aA)"‘=< ¥ (ﬁ)> (24)
non empty bins

Table | summarizes the glossary of the terms used in
strange attractors and turbulence environment respect-
ively. The “turbulence” quantities y, c(y), C(q), K(q), are
related to “measure densities” and are intrinsic to the
process, whereas the strange attractors quantities also
depend upon the dimension D of the observing space
(hence the subscripts).

In conclusion, the trace moment technique allows the
determination of the scaling component K(g) or the dual
codimension function C(g) which characterizes the statis-
tics of multifractal measures. However they are easily
estimated only as long as g < min (g, qp). The same limita-
tions apply obviously to the generalized moments (4). One
needs a formalism which may point out the limits beyond
which the traditional statistical moment calculation be-
comes ineffective.

8 Universal multifractals

In order to clarify the theoretical questions involved in
our study we make a series of general comments on
multifractals. It is clear at this stage that, in order to fully
specify the multiple scaling of an arbitrary multifractal
field, we need to know an infinite set of values of the
scaling parameters, ie. the whole function c(y) or the
whole function K(g).

This is a very disturbing inconvenience both from
a theoretical and an experimental (numerical) point of
view. It is worth recalling however that if a class of
phenomena shows some universality properties then the
large number of relevant parameters may eventually re-
duce to a reasonably small number (e.g. the familiar linear
universality in drunkard’s walk, where gaussian behavi-
our often occurs). Therefore the clue of the problem is to
seek a class of multifractals exhibiting universal proper-
ties.
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It has been shown [17, 20] that by appropriately re-
normalizing the product of independent multifractal pro-
cesses the resulting field exhibits universal properties, in
spite of the possible huge complexity of the single process
and the nonlinear relations between them. Here universal-
ity means that the statistical properties of the system
depend upon a finite and usually small number of para-
meters. That is to say the estimate of a limited number of
paramecters may fully describe the statistics of the multi-
fractal process.

Universality is obtained on a fixed scale ratio (A < o)
by increasing the number of independent identical distrib-
uted interacting processes (n— oc). Characteristics of uni-
versality in the sense specified above are shown by a class
of multifractal fields for which the codimension function
¢{y) and the moment function K(q) are specified as a func-
tion of only three parameters [17, 23]. These are called
universal multifractals.

The universal ¢(y) and K(g) are (see Fig. 3a—b):

o 1 B \
C1(E‘r'x,+_—) Ot?élt
cly—H)= T (25)
Clcxp(ét—1) oc=lJ
e,
= (g% — |
K(fll‘f‘qﬂ:f‘fx—l(q o v (g=0 for x<2)| (26)
| Cigqlogg =1 J
1
l-i—- -=1. 27)
o o

The Lévy index w, also called degree of multifractality*, is
the most significant one. It may assume values ranging in
the interval 0<x<2. It specifies the probability class of
the process: =0 defines monofractal processes; x=2
is the maximum degree of multifractality and it defines
multifractals with gaussian generators; values 1 <g <2
define processes with Lévy generators and unbound sin-
gularities; o= defines a process with Cauchy generator
and O <a<1 is a process with bound singularities.

The parameter C, is always the fixed point of the
codimension function ¢(y) defined in Section 2 (¢(C,)
=C,, see Fig. la) and represents the codimension of the
singularities contributing to the average intensity of the
field.

Figure 3 shows an appropriate redrawing of Fig. 1 and
Fig. 2 for the function c(y) (Fig. 3a) and K(g) (Fig. 3b)
provided by Universal Multifractals (for sake of simplicity
H=0). In Fig. 3a the dependence of ¢(y) from y is dis-
played for different values of the degree of multifractality
o. For sake of generality the curve is normalized to the
value C; of the fixed point. The same normalization ap-
plies to Fig. 3b where the curve of K(g) for the five main
classes of universal multifractals is shown.

The parameter H (called “degree of non conserva-
tion”) arises from the fact that the processes may be not

* This index o should not be confused with the one used in the
strange attractor formalism (see Table 1) mentioned also in Sect. |

v/ CIC,
T
=]
L

0.5

K(q)/C,

Fig. 3a, b. Schematic diagram showing the typical behaviour of
¢{y)/C, a and K{g)/C, b for each of the five main classes of universal
multifractals

conservative, A conservative process (H=0) is defined
when the mean value of the field is constant for varying
resolution; while for a non-conservative process ¢,, the
mean value changes with the resolution A. For a multipli-
cative process, the conserved field ¢; is obtained from
a non conservative field ¢, as [20]:

=471 (28)

Without entering into a detailed discussion of the different
cases [17], we point out that three parameter specify
processes ranging from a geometrical rigid monofractal to
a lognormal multifractal. No values «>2 are possible.
Thanks to the Universal Multifractal parameterization,
the limitations due to undersampling can be better under-
stood.

The maximum order of singularity and the maximum
order of moments attainable with a given sample size and
for a given value of « and C, can be proven [17, 20] to be



the following:

q :L}J) — D+DS i
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Furthermore the critical exponent g, for the divergence of
moments can be recovered [17, 20] by means of the fol-
lowing equations:

(4p—dp D
- =—-ix—1) ao#l
| gp—1 Cy
| gologap_ D a1
Cogp—1 Cy .

As long as the order ¢ of the trace moments is lower than
g, and than g, meaningful moment estimates can be
performed.

On the other side, after having adopted a universality
hypothesis, our aim must no longer be the simple calcu-
lation of scaling exponents, but the determination of the
universal multifractal parameters themselves.

9 The estimate of the universal multifractal parameters

The estimate of the universal parameters oz, C; and H can
be reached through several techniques. Some are men-
tioned in the present paragraph. together with the con-
cerns that can arise from their use. The description of
a more robust procedure 1s given in Sect. 10.

A very useful relation makes it easy to estimate the
H parameter. It involves the application of the D-dimen-
sional Fourier transform %, (k) to the field under invest-
igation. E(k) obeys the scaling relation:

E(k)=~|F (k)K" T ock™?, (29)

where E(k) is the spectrum at wave number k and f is the
spectral slope. Since the Fourier spectrum corresponds to
the second order moment [2] the following relation holds:

B=1-K(2) (30)

where K(2) is the second order moments scaling function.
The use of §in (26) gives immediately an estimate of H as
a function of ¢ and C;.

Also the determination of « and C, can be achieved
using numerical techniques, from the estimated K(g). The
parameter C,, for instance, is given by the slope of
dK(1){dg. Using (26), a possibility [25, 26] to determine
« from K(g) (when x#1) is, for H=0, to fix a value of g,
say ¢ and then to consider that the ratio K{g)/K(q) is
a function of ¢ and of the « parameter only. The value of
a can be estimated through a fit of the function:

K(g)

4 (g —q). (31)
q —q

Kig)=
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The reliabilities of these methods [25, 26], crucially de-
pends upon a correct calculation of the scaling exponents
K(q), so that the problem remains of how to evaluate
C, and «, properly taking into account the limitations
introduced by hard singularities and by undersampling.
Furthermore, if we first estimate K (g) by mean of the trace
moment technique in a region safe from moment diver-
gence and with suitable statistics, and then perform a non
linear regression to get % and C,, the strong correlations
might lead anyway to very poor parameter estimates [21].

10 The double trace moment technique

The double trace moment (DTM) technique [27] over-
comes most of the problems of the more common univer-
sal parameter determination techniques, providing a ro-
bust and rather direct estimate of « and C;.

Let us define the »-flux:

1M%.p(B;)= [ e4d”x (32)

B,

that is the flux, resolution A, of an arbitrary power # of the
field ¢4, resolution A >4, as a generalization of the flux
(15). The double trace moments are defined as:

/
Tr,»;,-_{nﬁ-_D{Ba]q]:&EH;;D{BHQ> (33)
A

that is a generalization of the trace moments (16) essenti-
ally by considering the field " with n# 1. In analogy with
(17) the scaling relation for the double trace moments
reads:

Tra (I}, p(B;)) =K @n=@= Do, (34)

For universal multifractals the scaling exponent allows
the useful factorization:

K{g,n)=n"K(g, 1). (35)

Hence, by keeping ¢ fixed (but different from the special
values of 0 and 1) and studying the scaling properties of
the double trace moments for various values of #, one can
determine the scaling exponent K (g, ) as a function of »:
it can be done through (34) written as:

log Try=[K{(q,1)—(g—1)D]log 4. (36)
Then, thanks to (35) written as;
InK(q,n)=alnn+In K(g, 1), (37)

the parameter o can be estimated from the slope of the
log|K(q, )| vs. logn. The accuracy of these estimates can
be verified by repeating the operation with various values
of gq. The double trace moment technique is therefore a
powerful tool to determine the degree of multifractality «.

It is worth pointing out that formula (37) is true for the
bare moments with N,—oc; it will break down for finite
sample sizes and dressed moments beyond the divergence
threshold, the accurate criterion for validity being
max(#, gn) <min(gp, q).
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As for the estimate of the parameter C,, by inverting
(26), given o, one obtains, for conserved fields (H =0);

—1
¢, E-VK@
9 —q

_ Kiq)
g & a=1.
qlogg

It is important to notice that the accuracy on C, will
depend upon the accuracy on o

11 Application to experimental data

The universal multifractal analysis, using the DTM tech-
nique, to estimate the parameter « and C, for the conser-
vative case (H =0) has been performed by Ratti et al, [19]
on semiinclusive multiparticle production from hadron-
hadron collisions at \/;=16.? GeV. The topological
space used might be as large as D=3, i.e. rapidity — p? and
azimuthal angle ¢, but the analysis is limited to the rapid-
ity space only. It is clear that events with different charged
multiplicity may not have the same “sparseness” in rapid-
ity (or pseudorapidity) space.

Applying the double trace moments technique to the
semiinclusive rapidity distribution the authors of [19]
have identified the range of values for 5 in which the
log—log dependence is linear and where therefore the
degree of multifractality « can be estimated: « and C, vary
by about a factor two ranging from charged multiplicities
N =6 to N, =20. More precisely, for h—h collisions at
Js=167GeV, ax04 C,;x06 for Ny=6 u~08
C,;=~0.3 for N_,=20.

Other attempts to estimate the universal multifractal
parameter o without the double trace moment technique
have been made by Brax and Peschanksi [25] and Ochs
[26]. The latter, following the procedure indicated by
formula (31), performs a fit of the function;

_ K(2)

K(@)=5_

@ —q) (38)

obtaining the value «=1.6. This estimate is not directly
comparable to the values obtained in [19], mainly be-
cause Ochs uses the intermittency exponents, calculated
through factorial moments, as an estimate of the scaling
components K(g), usually derived from trace moments.
Furthermore in [19] a semiinclusive analysis of h—h
interaction is performed, while Ochs uses inclusive
data.

We may finally note that Brax and Peschanski [25],
using data from heavy ions collisions, obtain the value
«~2.4>20, which cannot correspond to any multifractal
process originated by a Lévy generator.

While we claim that the universal multifractal ap-
proach provides a significant improvement in understand-
ing intermittency phenomena, the most difficult problem
1s how to estimate the errors on the calculated parameters
(the involved random variables may show for instance
diverging variances).

12 Conclusions

In this paper the stochastic statistical approach to multi-
fractal fields has been shown to possess a more general
validity than geometrical approaches. The basic codimen-
sion functions c(y) and C(g) are independent of the
dimension D of the support space over which the process
occurs.

The need of properly taking into account small scale
hard fluctuations, that might affect the statistical fluctu-
ation estimate at large scale, is pointed out. Failure in
considering those effects may affect the reliability of the
statistical description of the phenomenon. The same ef-
fects are neglected in the current use of both the factorial
moments F, and the generalized moments G,.

The use of double Trace moments applied to universal
multifractals introduces the possibility of explicitly esti-
mating the range of validity of the statistical technique
used. This is not possible otherwise. Any attempt to separ-
ate the contributions originated by different statistics is
uninteresting.

The application of universal multifractals and of
double trace moments to the high-energy data provides
more information on the statistical properties of multi-
particle production processes.
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