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ABSTRACT:

We develop a formalism for particle/photon scattering statistics in media (“clouds™) whose density is a multifractal
measure. The basic quantities are the size of the medium measured in units of mean free paths (k), the codimension function
of the media density and scattering analogue codimension function. We obtain simple relations asymptotic in ¥ between
these functions and hence obtain the single scattering statistics. We suggest a way to renormalize the multifractal so as to
obtain an equivalent homogeneous medium, and we estimate anomalous diffusion exponents, Numerical simulations show
that the results are very accurate even when x is not large.

1. INTRODUCTION .

Geophysical systems such as the atmosphere exhibit extreme variability over ranges of scale which can exceed factors
of 10%. The simplest dynamical models of these systems are scale invariant; indeed, a growing body of theoretical and
empirical work is showing that geophysical systems do indeed obey scaling symmelries over considerable ranges (for reviews,
see 1], see also papers in [2-4]. Growing recognition of this has lead to mushrooming interest in scaling models of a wide
variety of geophysical systems. In particular, thanks to advances in scaling ideas - particularly multifractals and generalized
scale invariance - models can now be sufficiently realistic that they can be used for simulating various physical processes
including transport phenomena. In the following, for convenience we consider our media to be a cloud, and the particles,
photons, although applications involving neutrons in turbulent media suggest themselves.

Starting with [5], fractal models of clouds have been used to numerically study the radiative properties of extremely
variable clouds. Note that unlike Markovian random media, multifractals have long range algebraic rather than short range ’
exponential decorrelations. Techniques for studying the transfer on the latter (e.g. [6]) would not appear to be appropriate.
Since then they have been used in a series of papers [7-11] who used simple fractal (“B”) models to investigate the “bulk”
properties (overall mean albedo and transmittance) of clouds. Many other researchers [12-14] have now used fractal or
multifractal cloud models for modeling radiative transport, although most results so far have been numerically derived and the
all important effective optical thickness has been quite low (typically <3, i.e. below the thick cloud regime). References [15-
16] was the first to go beyond “bulk” flux estimates by numerically calculating detailed radiation fields. This was done on
large {1024x1024) two dimensional multifractal cloud models using a class of universal multifractals (lognormals). Below,
we will theoretically derive one of the key numerical results of this study; the bulk transmittance exponent.

While numerical approaches (which are nontrivial for multifractals) certainly provide indispensable tools for
understanding radiation in scaling systems, in themselves they are insufficient to resolve the two basic physical problems: the
statistical relationship between the radiation and cloud fields (as functions of resolution), and the scattering statistics
describing the random trajectories of individual photons. While the above references contain some first steps in theoretically
addressing the former, references [8, 15] have obtained some initial results concerning the latter. Unfortunately, while their
results (mostly direct transmittance statistics) apply to arbitrary multifractal clouds, they are only valid in the asymptotic
limit involving small distances. In this paper? we obtain much more useful results asymptotic in the log of the optical
thickness. Elsewhere, we extend these results to give a fuller treatment of multiple scattering and a more complete treatment
of universal multifractals. Many results are exact for all optical thicknesses and even the asymptotic thick cloud regime turns
out to be attained for quite low thicknesses (in the range 4-10) hence our results are widely applicable. We also use our
results to renormalize the multifractal; effectively reducing the multifractal transfer problem to a standard homogenous transfer
problem but with a drastically reduced “effective™ extinction coefficient. Finally, we show how this result can be understood
in the context of some recent results on diffusion in multifractals.

3The basic framework was announced in [36).
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2. BASIC THEORY
2.1 MULTIFRACTAL CLOUDS:

The multifractal models considered here were first developed as phenomenological models of wrbulent cascades. In
hydrodynamic turbulence, the governing nonlinear dynamical (Navier-Stokes) equations have three basic properties that lead to
the cascade phenomenology: 1) scaling symmetry . 2) a quantity conserved by the cascade ( energy fluxes from large to small
scale), and 3) localness in Fourier space ( i.e. the dynamics are most effective between neighboring scales). Cascade models
are relevant in the atmosphere and in particular in clouds since the underlying dynamics is of hydrodynamic turbulent origin.
There is now a whole series of such phenomenological models: the "pulse-in-pulse” model [17], the lognormal model [18-
20], the weighted-curdling model [21]. the B-model [22], the -model [23], the random B-model [24], the p-model [25], and
the continuous universal cascade models [26-27].

In cascade processes, a large structure of characteristic length =L and density p (initially constant=1) is broken up into
smaller substructures of characteristic length I =L/A. The density in each substructure is multiplicatively modulated by a
random factor (keeping the overall ensemble average fixed <P, »>=1). When this process is repeated (the overall ratio A is
increased) larger and larger values of P, appear, concentrated on smaller and smaller scales. The overall result is highly
intermittent with the property [27];

-2(y)
Pr(p, 2 ANy =X o
(equality is within slowly varying functions of A such as logarithms). The codimension function c(y) is a statistical scaling
exponent characterizing the probability distribution. v is an order of singularity since it specifies the rate that p), diverges as
4—yes. When the dimension of the embedding space D > c(y) it is simply the fractal codimension of the set of density
measures p, exceeding the threshold A7 .

The other equivalent approach to describe the multifractal field is to specify the scaling of the statistical moments

< pi >. We define the multiple-scaling exponent K(q):

<pl>=AK@ = J;{‘”p(y,)u)dy, A1 o)

with p(y,A)=dPr/dy is the probability density of y as a function of A. The moment exponent K(q) is related to the scaling
exponent c(y) by the following Legendre transformation [28]:

K(q)=max,[gy —c(7)]

c(y) = max,[gy — K(q)] 3)

hence, we obtain a one to one relation between singularities and moments: g=c’(¥), +=K'(q).

1f no further information is available, to fully characterize the process, the entire K(q) or ¢(y) function will be required.
This is equivalent to an infinite number of parameters; modelling and analysis would be unmanageable. Fortunately, as is
often the case in physics, the dynamical cascade processes possess stable and attractive generators leading to “nniversal
multifractals” [27]; for conserved (stationary) processes, the Iatter can be characterized by only two parameters (a.C1 )(see
eq. 4). These have relatively straightforward physical interpretations: respectively, the degree of multifractality, the sparseness
of the field - =3 =y S il .. The primary parameter 0. (the Levy index of the
generator) is bounded below by 0 corresponding to the monomfractal minimum, and above at 2, the lognormal multifractal.

— _1’_ _1_ -2
«N=Clgr+2)
¢
K(g)= a_’l(q“ -q)

When a<?. the above is valid for q20; otherwise it =eo; we have negative temperature “multifractal phase
transitions™. For 1<a<2, c(y)=0 for y<-(C1/(c-1)); the slowly varying factors in eq. 1 dominate comresponding to frequent
low density “Levy holes”. For O<a<l, y<C1/(1-a). Below we will illustrate our ideas primarily conserved lognormal
multifractals.

+—17=1 @)
o

Q=

2.2 PARTICLE SCATTER/ RADIATIVE TRANSFER:

bThe terminology is due to the existence of a formal analogy between multifractals and classical thermodynamics.
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Here we outline recent results which provide the basis for systematic study of radiative transport in multifractal media.
Specifically, we indicate how formulae analogous to eqgs. 2, 3 for the multifractal optical density field arise for radiative
properties. Consider the following definitions:

k= extinction coefficient [mng‘l]

<p> = mean cloud density fkgm'3}

! = random photon path distance [m)

L= size of cloud [m]

/m= mean free path (m.£.p.) of a photon in the equivalent homogeneous cloud =(k<p>)-1 [m]

A=L/I = scale ratio < A, (A=maximum cascade resolution)

x=/L=A"! random photon nondimensional distance, (fraction of cloud)

Tp =I/lm = random photon distance, (no. of homogeneous cloud m.£p.’s = kx)

X = L/I; = extinction parameter = no. of m.£.p.'s across cloud = mean optical depth = extinction coefficient in units
such that L=1, <p>=1.

The optical distance over a physical distance / is thus:
()= [ kp (2)dz <kp, 1 ®
!

where we have written p; g for the average dressed density at resolution /. In multifractal theory it is important to
distinguish between the "bare” and the "dressed"” quantities [27]. The bare quantity is obtained after the cascade generating the
cloud field, has proceeded down to scale 4. The corresponding dressed quantity however is obtained after integrating the
completed cascade over the same scale. This implies that the bare quantities have no small scale interactions, whereas the
dressed ones have a full range of interactions. A cascade whose development is limited to the scale A is "bare” on this scale:
no smaller activity is hidden or "dressed”. The difference arises for high order moments < T3 >— o= for g > q,,, where qp
is the solution of K(gp) = (qp - 1)D, where D (=1in eq. 5) is the dimension of the averaging set (see [27]). This result can
be understood as the fact that -with the exception of rare violent flucuations - the spatial integration smooths out all the
"hidden” small scale fluctuations. This implies the approximate equivalence of the bare and dressed for all but the strongest
fluctuations; fortunately, we shall see that the corresponding high density regions are unimportant for the transfer.
Using the above notation with the bare=dressed approximation p; d = pj,, we obtain:

or.A)= %Ff‘% ="k ©
which is the optical thickness over a distance / through a singularity of order y. The direct (unscattered) transmission T
across this distance is thus:

T(H=e" @)
Since the transmittance is the probability distribution for photon path lengths, we can average over the singularities and
obtain:

Pr(! > ) =(T(1)) = (e} ®
Take Tp as the dimensionless photon path and write it as a scaling function with an order of singularity "p defined as follows;
l
ey U HIRDT RO Sey
TP—K’—T-H—K (&)
o1
A=k (10)

since A>1, x>1, we have y5<1; also Ak 1P

We can now obtain a multifractal scattering formalism in which the extinction coefficient x takes the place of the scaling
parameter A. Instead of the codimension function c(y) of the singularities of the cloud density ¥ we rather talk about an
analogue codimension function cp(¥p) which describes how the single photon path distance singularity yp varies with the
extinction coefficient:

Pr(z, 2 k") =Pr(l’ > 1) ~ 77 an
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(Ti’) = fp(qp)rxp{q’} (12)

fp(gp) is the prefactor which is given explicity since we will calculate it below. cp, Kp will be linked by a Legendre

transform as in the standard multifractal case.
The mean transmission in eq. § is obtained by averaging over the singularities, using eq. 2 to obtain the probability

density of .
(T(r. )= [ p(r.2)dy (13

From eq. 2 wg see that AK(Q) is the (base X, bilateral) Laplace transform of the probability density. It will tum out to be
convenient to write the probability density p(wA) in terms of its inverse Laplace transform:
2

logl o Klg)-
p(7.A)=— j,q' @-er g
2m 2
i . (14
where ¢ is chosen so that the path of integration passes to the left of the poles in the complex 1 plane. We now use the
following transformation of variables:

{gpaia L ' (1s)
1-7,

to replace the integration over y by one over ¥

(T(Yp9x-)) = _1__ J' rw,+{1—:r,}x{q) je-ﬂ"""'h“d('}’, log x’)dq
27 Lt ' (16)
We now use the following:

R
je KT-areskg(y log k)dq = F[—q, x’*""‘"] = Ex Wy +T(-q) an
T penin
valid for all g, the far right approximation is valid for a lower cutoff Tpmin<<0- Hence for g<0 we can take the limit Ym—
—eo and obtain:

~ 1 Cina iy
¢ ¢ [P o ar,H1-7, JKla)
Pr(z, > x" )=k ") = 1y, 00) = — Wik AKOP(_g)dg a8)

e—im
note that ['{-q) has a simple pole at 0 and at pasitive integers, hence the contour in the above integral must pass to the left of
the origin in the complex q plane. In order 10 extend the region of analyticity (and hence of validity of the results below), we
‘may consider the probability density, obtained by differentiating eq. 17 with respect to Yp:

1 T qr,+{i=7, JK(q)
BIE [ (~a+K(@)r(-a)x™ t=nrlelyy (19)
.
The extension of the above formula for q<1 (rather than g<0) is usually possible since the rapidly oscillating term
qlx Qfpmin (gq, 17) usually gives no contribution. For example, consider the case where =2 or K(q) is nonuniversal but
analytic for Re(q)<l. Here this oscillating term has a saddle point at 2 value g given by K'(@) = -(Yp-Ym W(1-yp)—>-02;
however the corresponding value of the exponent is -¢(-oo)(1-¥p)<0 so that the contribution is negligeable for large x. It
turns out that it can be also be neglected for universal multifractals with e>1, although for ai<1, there is no convergence.
Now, introduce the following change of variables:

q,= K (q) -q (20
This transformation is 1-1 as long as 0>Re(qp)>min(1((q)-q)=—c{1): so that the above relation will be analytic and single
valued. Note the particular value g(-1)=1. Also, since I'(-q) has a pole at g=1, the following will be valid for gp>-1 (the
transformation will be single valued since for C1<1, e(1)>1).

p(t,)= ';EIN((K (ala,))- Q(ap])r(-f;f(qp])%]KK{"{“’”K“”P% == ‘_Lf (g,)x" 0 dg,
ey
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The corresponding integration contour for 9p can be deformed into a line parallel to the imaginary axis, offset by the
small amount ¢ (<0 here). The limits of integration have been deformed appropriately, by taking advantage of the analyticity
of the integrand in the negative real half-plane (avoiding poles, and in the case @<2, the branch point at the origin). The far
right equality is the inverse Laplace transform (corresponding to eq. 14). By inspection, we obtain:

K, ('?p) =K (q(qp )) —p T q(qu 22)

fp(qp)=f—££—,_(%(log o

with g, qp related by eq. 22.
We can now calculate Cp(¥p) using the saddle point method on eg. 18, we obtain:

¢,(7,)=-min, (g7, +(1- 7, )k (g)) = (1- }',,):(%‘-’-J @3)

wlr)-of (2 p

The above is valid for multifractals with K(q) analytic for q=c’(y)<1 (if universal, then for o=2 only, when I<a<2 only for
small yp; see [29]). The minimization condition determining the saddle point is the usual K’(g)=y where;
=
y=7—L (24)
(1-7,)
Under the above conditions, we obtain two families of codimension and moment scaling functions; their mutual
relations are given in table 2.

Photon _statistics Cloud_ statistics
O =-g+K{q)
K,(q,) =max, [q,7, —c,(7,)] =K(g) = max [gqy —c(7)]
Ivp =1/(1-y)
¢, (¥,) =max [qy, - K,(q,)] c(y) _max, (g7 -K(g)]
1-y -y

Table 1: Summary of relations between multifractal cloud and photon scattering exponents,

To give an example of the abave, consider the o=2 (lognormal multifractal). We have:
2 2
c(y):C{l+lJ o(r J=(1“(1+C1)(1"?’p))
C] AR 4(:1 [1 xd },p)

K(q)=C1(q2—q) K g o= (1+C1)2+4C1QP_(I+C1)
p'( p) P 2C1

@25
Numerics have shown (see below and [30]) that formulae (23) are accurate even for clouds with mean optical thickness as low
as 4-10 (formulae 22 -when applicable- are exact),

2 ili ity n hi T le length:

In the thick cloud limit, scattering will be dominated by the most probable scattering. Concentrating on the
lognormal case (which will in fact be a good approximation to all cases where K(q) is analytic at g=0) the most probable
scattering occurs for g=0, y=-Cy, p=C1/(1+C}) (ignoring the corrections). Using eq. 20 with a=2, we obtain for ¥p near
enough the minimum:



[1+cl)[(1—f'cﬁ""] ,L‘%l[c,—(1+C.)r,+b;‘[7’f“ﬁ(:‘c?]]=

Plr)=(rcye S X =

ie. as k increases, the transport will become dominated by photons traveling a (nondimensional) distance Tp:

=L
7=
Cl

1+, 1+, A%,

T,=K '€ K @n
where Ayp is a normal random variable with <Ayp>=0, m'yp2> = 2C1(1+C1)‘1(]0g1<)'1 (i.e. variance decreasing with
logx).

3. NUMERICAL SIMULATIONS AND DRESSED STATISTICS
3.1 SIMULATING THE MULTIFRACTAL CLOUDS

The above calculations were made assuming that for the significant singularities, the bare and dressed densities are equal.
The difference is in fact a “hidden” singularity (see [31] for this and the relation to self-organized criticality) which gives rise to
an independent factor which modulates the bare statistics. The precise result is that this random factor is of order 1, except for
very rare extreme events with v>yD=K’(gD) where qp is defined in section 2; the critical order of divergence. To compare this
“pare” approximation we simulate the transport through multifractal fields using a continuous cascade algorithm [27].
Simulations were performed using three C1 different codimensions of the mean, C1=0.1, C1=0.5, C1=0.9, corresponding to
increasingly violent fluctuations in the cloud model. Note that real cloud radiation fields® have parameters estimated to be
roughly & = 1.35, C, = 0.15 depending somewhat on the wavelength? (see (32}).

3.2 SIMULATING THE TRANSPORT:
For the numerical simulations of the transport we simply discretize the optical depth integral and calculated the
ensemble averaged transmission as a function of pathlength Tp=KxX :
PN NN L
<T(1,)>=<e " >=< 1_‘[.‘3‘““’*“"A > 28)

The simulated multifractal cloud density field p, (x;) had the resolution {scale of homogeneity) A~ with an overall optical
thickness of  (since <pp>=1 and the external scale=1). To calculate the transmission through one realization the photon
starting points inside the cloud were randomly chosen (see fig. 1). Moreover we implemented periodic boundary conditions
and calculated the transmission for 0 <Tp< K. Finally the ensemble average was taken over the total number of realizations.
This procedure was repeated for increasing extinction coefficients K = 2" n=12,...,10.

The analyzing technique used for the simulated data is the Probability Distribution/Multiple Scaling method (PDMS)
([33-34]). For each fixed order of singularity ¥p the logarithm of the probability distribution is plotted versus the logarithm
of . If the probability distribution obeys eq. 11, these points lie on a straight line, whose absolute slope is cp(¥p) (fig. 2).
The sub-exponential prefactors determine the intercept. In order to obtain accurate estimates, we analyse the probability
distributions rather than densities and determine both probability distributions Pr(7, > %77 for the right rising branch of
cplyp) and Pr(t, < x7") for the left branch. There are two distinct intercepts i.e. different prefactors for either probability
distribution which can be seen very well in fig. 2. An advantage of examining the path length distribution this way, is that
it includes a range of scales of x rather then just a single scale thus increasing the accuracy of the estimates. The "dressed"
probability distribution exponent €, 4 (7.) obtained this way is compared with the analytically derived® ¢, (¥ L) (fig. 3).

We also checked the scaling of tf‘ie moments of the dressed photon path length with respect to X. This is done by
plotting log < 77 > versus log ¢ (fig. 4). As previously, the aim is to compare the bare and the dressed statistics. If the
dressed moments are scaling ( i.e. they obey eq. 12), the points for each specific moment q lie on a straight line, whose slope
is Kp,g(@- In fig. 5 we compare the "dressed” moment scaling exponent Kp,dl@ with the analytically derived Kp(@)-

< Note that [30] finds evidence that the cloud density has a=2, C1=0.08, however the results may be biased by the measuring

device.
d Real radiances and cloud liquid water are nonstationary involving a third universal multifractal parameter H.

eNote that for large . the bound g<l is equivalent 10 <C1, 1p>-C /(1-Cq).
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4. RENORMALIZATION

We can now relate the transmission statistics of lognormal multifractal clouds to those of a homogeneous clond. At
first sight this seems to be a difficult task since we already explained in the introduction that in the thick limit (x large)} both
types of clouds will result in a completely different behavior of the radiative transfer properties. In this section however we
will show that the photon statistics of a multifractal cloud can be approximated by the photon statistics of a "renormalized”
homogeneous cloud in a certain range of photon singularities. In the following section we will relate this to multiple
scattering and to results of diffusion on the same multifractals. :

We seek to replace the multifractal cloud with a nearly equivalent homogeneous cloud with "effective” extinction

coefficient keff=k?. This cloud has the direct transmission given by T(x)=e """ which leads to the following linear

Kp hom(ap>=gp-agp (29
A linear Kp(q,) therefore indicates exponential transmission T(x) (note that the Legendre transformation breaks down in this
case so that there is no corresponding cplyp} ). Now we compare this with the Kp(q,) for a multifractal cloud. Using the fact
that in the large k limit, the scattering is dominated by gp=g=0, we obtain to leading order;

. K,(3,)~q, _ 1

a= lmq,-.n'—q;_"=l‘yp(% :0)__{?’{{)5
The linear approximation Kp(q,)=q,-qa leads to a renormalized extinction coefficient of the homogeneous cloud (using
K'(0)=-C, for a=2): :

1-cy

K=K 31

The linearity of the Kp(q,) function, hence accuracy of the approximation in the range q, is quite high (see for example fig. 5).

(30)

4.2. COMPARISON WITH MULTIPLE SCATTERING SIMULATIONS:

For lognormal multifractals, it is not difficult to extend the above single scattering results to the multiple scattering
case, the main difficulty being the adequate treatment of the correlation structure. This treatment {developed elsewhere) does
indeed confirm that comrelations play only a secondary role in the large x limit, as suggested by the near linearity of Kp.

In order to test this idea, we considered the numerical transmission results on lognormal multifractal clouds (with
C1=0.5) published in [15, 16] (see Fig. 6). These simulations were made using two dimensional discrete lognormal cascades
with scale ratio factor 2 per step, total range of scales 210, Cyclic boundary conditions were used in the horizontal and
photons were vertically incident. Isotropic discrete angle phase functions were used and the resulting fields in each of the four
directions at 909, as well as the overall albedo and transmission were calculated by both Monte Carlo and relaxation
techniques (the agreement of the two methods increased confidence in the results). The extinction coefficient was increased by
factors of two so that the total mean optical thickness x<p> increased from 12.5 to 200. In order to obtain the theoretically
predicted renormalization result, we recall that for plane parallel clouds, with the same boundary conditions and the Discrete
Angle (2.4) Radiative Transfer phase functions 8], where t, r are the discrete angle forward and backward scattering
coefficients respectively. In [15] isotropic DA phase fificiibns were used (i.c. t=r=1/2). Using this result and the effective
extinction coefficient in place of the true optical thickness 7 = Keff <P >= Kyg , we obtain:

(T)=—1L _ o270
) 1_%,:!1]1'1‘

Fig. 6 shows the result of superposing this function on the numerics, which are nearly power law even for « as low as
12.5. The total transmittances through the renormalized homogeneous cloud show for all values of x only less than 20%
difference from the total transmittances through the multifractal cloud. Closer examination shows that there is a slight
curvature suggesting that there are still some residual small x effects and that a better estimate might be obtained by
considering only the last two points. Indeed, this is remarkably close to the theoretical renormalization result {a=2/3) since it
yields a=0.65. These results suggest that renormalization will give accurate results for bulk transport properties in
multifractal systems with other boundary conditions, perhaps even with modest optical thicknesses.

(32)

4.3 COMPARISON WITH DIFFUSION:

The surprisingly accurate prediction of reference [15) thick cloud numerics can perhaps best be understood by
considering the relation between radiative transfer and diffusion on multifractals. In general. there will be two significant
limits: the large A (wide cascade range) and large x (thick cloud) limits. Clearly, for fixed and finite A, if the cloud is made
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thick enough, (1>>A) the mean free path will be much smaller than a single resolution element and the photons will diffuse
through each homogeneous region of size A-l. The overall result will be photons diffusing through the multifractal cloud.
In actual fact, diffusion can still occur under somewhat less stringent conditions when ¥ is large, the main requirement being
that weak density regions become so rare that direct photon transmittance across a large fraction of the cloud is statistically
negligeable. The multifractals with o.<2 have precisely the property that they are dominated by weak events (negative
singularities) called “Levy holes™. Itis a priori possible that -even with large x- if A is sufficiently large (the order of the
limits A—see and k—eo is important i.e. with x fixed, but with A — o) they will have large regions dominated by the
holes, and hence lead to nondiffusive transfer.

However, in the case studied here, the parabolic shape of c(y) guarantees that large negative v's and the comesponding
weak regions are extremely rare, indeed, in the preceeding development, we have seen that the value of A is essentially
irrelevant as long as it is sufficiently large. We therefore anticipate that the photons will diffuse for large enough x. To
make this plausible, we cite a recent analytic result believed to be exact for diffusion in one dimensional log-normal
multifractals [35]:

!
AL
(x7)eet (33)
for the RMS particle distance after time t in a lognormal multifractal with codimension of the mean=C]. Noting that normal
diffusion has linear variance growth, we can make the identification between the multifractal distance above and an equivalent
homogeneous "effective” distance:

1
GG = (x?
(I ) (x )rf 34
Finally, identifying the mean free path x"1= <x2>1/2 we obtain:
1
1+C)
= Ko 35)
The above multiple scattering arguments are therefore completely consistent with the diffusion results. Note that for
diffusion in spaces with dimensions higher than one, the above diffusion result is no longer exact, whereas our scattering
arguments appear to be valid in a space of any dimension.

K

5. CONCLUSIONS:

We have developed a formalism analogous to the multifractal singularity formalism for understanding photon
scattering statistics in radiative transfer in multi ctal media, and have tested the results numerically on lognormal
multifractals. Although the results are only exactly valid in the thick cloud limit, the approximation was found to be quite
accurate down to k=1-10, so that the results may be widely applicable. The theory involved two fundamental quantities: the
photon path exponent scaling function Kplqp) for moments order qp, and the analogue codimension function cp(yp)} that
determines the scattering probabilities for various nondimensional path distances Tp=Kx=K .

It was shown that the near linearity of Kp(qp) lead to the possiblity of “renormalizing” the multifractal by replacing it
with a near equivalent homogeneous medium but with an effective extinction coefficient kx/1*C1) where C1 is the
codimension of the mean singularity of the cloud. Finally, we argued that this approximation was likely to continue to be
valid for multiple scattering, and was also compatible with recent results for diffusion on lognormal multifractals. We
compared our results with recent numerical calculations finding excellent agreement.

The main limitation of these results is their restriction to the cases where K(q) is analytic at =0 (i.e. for universal
multifractals, 0=2), whereas empirical results indicate a=1.35 is more accurate for radiation in real clouds). The key point in
the development is the approximation of the bare multifractal properties by the dressed ones; when a<2, this step is still
straightforward for the larger singularities, but may breakdown for the regularities associated with the numerous weak “Levy
hole™ events that will dominate the scattering. However, preliminary numerics indicate that even here, similar treatment may
be possible using appropriate asymptotic dressed multifractal properties. This -as well as extensions (o full multiple
scattering statistics - is an important area for future work.
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Figure 1 Photon "random walk” in a multifractal cloud (C1=0.1; A=512) with extinction coefficient k=32 in a) and k=128
in b). The y-axis represents the cloud density p and the number of scatiers of the photon (1 unit comesponds to 20
scatters). The x-axis represents the position in the 1-d cloud. Clearly to see is that with increasing extinction coefficient
kthe mean free path length of the photon decreases.

Figure 2; PDMS analysis of the free-photon path length probability distribution. Simulation with =2, C1=0.1 , scale of
homogeneity A=4096, 1000 realizations, 512 photon-starting points in each realization. The upper 4 lines represent
log¥r(7, < K'* ) whereas the lower 4 lines represent |10gFT(T, > K°7)]—1. The scaling holds down until x=8.
For yp=-0.5 and ¥p=0.6 the scaling is not provided anymore which is in good agreement with the of theoretically
predicted limits (¥ =—U.33, ¥, = u.0).

Figure 3;: Comparison of the analytically derived bare ¢ (¥, )-function with the numerically derived ¢, 4(7, )-function
obtained from the slopes in the previous graph (in the range 8<x<256). In the predicted range of validity

= —.33< Y, <U.b=7,"" there is a good agreement between both curves. The left branch represents
¥I7, <K') and the right branch represents ¥1(7, > K* ).

Figure 4 Scaling of the moments of the dressed photon path length Tp as a function of k.. log<T; > versus logk for
various values of q. There is a very good scaling for «>8 since the lines are straight in that regime. The scaling breaks
down for smaller ¥ since a unique normalization is not provided anymore. Data from simulation with a=2, C1=0.1,
4096 realizations, 512 photons/realization.

Figure 5; Comparison of the moment scaling exponent function Kpl(q) for the “bare” with Kp,d(q) for the “dressed” photon
path length for a field o=2, Cy=0.1. In the range 0.5 < q < 6 both curves are in very good agreement. The dressed
Kp.d(qp) curve was obtained from the simulation with 4096 realizations, 512 photons/realization.

Figure 6; Result on total transmission after multiple scattering through 2-d multifractal cloud (Cj =0.5) published in [15]
compared to the thick cloud limit of the transmission through a homogeneous cloud with renormalized extinction

coefficient Keff.
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