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RADIATIVE TRANSFER IN MULTIFRACTAL
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Abstract. This paper is devoted to studying the inhomogeneity of the radiation
field resulting from propagation through a multifractal cloud field by relating the orders
of singularities and codimensions of both fields. This direct relationship is of funda-
mental importance for climate studies, whereas the inverse problem is fundamental for
remote sensing. We point out similarities between smoothing by scattering and frac-
tional integration, showing they are exactly analogous for certain cases: 1-D medium
and plane parallel atmospheres (with a few extra hypotheses). We therefore deduce that
there is a limited range of singularities susceptible to exhibiting identical multifractal
characteristics before any inversion. The lower bound (vp+) is defined by a first order
multifractal phase transition which occurs when the dimension D’ of the fractional in-
tegration is insufficient to smooth out the singularities of the cloud field, whereas the
upper bound (;) is defined by a second-order phase transition and corresponds to the
limitations induced by the finite size of the samples. These two critical singularities
drastically reduce the range of relevant singularities and justify some essentially ad hoc
procedures used in multifractal estimation.

1. Introduction. In meteorology, climatology and remote sensing,
fundamental uncertainties are related to cloud modelling and analysis. It
is especially difficult to describe the complex interactions between radia-
tive transfer, cloud microphysics and cloud dynamics: none of the three
major aspects of clouds—their optical properties, their spatial and tem-
poral variability—nor the associated precipitation are well understood. A
particular aspect of interest here is that estimates of the total albedo de-
pends largely on the variation of cloudiness in atmosphere. One of these
problems, “the cloud absorptivity paradox” is still not resolved. The basic
problem can be stated as follows: comparison of radiation budget estimates
at the top and bottom of the atmosphere leads to the indirect inference that
absorption considerably exceeds the largest values obtainable from theory,
when the latter assumes homogeneity and no absorption. It is obvious that
remote sensing needs a model of atmospheric variability to handle the ob-
servations, in order to deal with the inverse problem : how to deduce liquid
water content variability from radiances variability.

The same holds for climate studies (see for review Somerville and Gau-
thier, 1994) and indeed recently, Cess et al. and Ramanathan et al. (1995)
cite observations of an “anomalous absorption” of radiation in cloudy skies
in comparison with the values predicted by usual models (homogeneous
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FiG. 1. Illusiration of photon trapping between high inhomogeneities of the cloud field :
eptical path as well as effective absorpiion increase considerably.

atmosphere). If true, this would lead to large uncertainties in assessing
climate change. Byrne et al. (1995), in order to explain this anoma-
lous absorption, propose a simple model of Broken Clouds and measure
an increase in the photon mean free path in comparison with the value
calculated for a homogeneous atmosphere. The modelled media is a layer
filled with a mixture of clouds and portions of clear sky. They argue that
due to photons travelling horizontally (see Figure 1), columns of clear sky
absorb more light than in the corresponding completely clear sky. These
“holes” significantly increase the mean free path of photons and thus in-
crease the absorption of the layer, i.e. photons are trapped due to cloud
inhomogeneities. They show that there should be a new description of
clouds and suggest the multifractal model. Our purpose is not to explic-
itly solve this problem of Anomalous Absorption but instead to study the
effect of liquid water concentration variability on the light scattering, in
the ideal case of perfect scattering. The object of this paper is to argue
that homogeneous models are simply not relevant in relating the highly
variable properties of clouds and radiation fields: however smoothed, the
intensity of clouds’ multiply scattered radiation fields reflects this extreme
variability. Unfortunately, classical methods—of both radiative transfer
and dynamical modelling—are limited to studying such relationships on
an arbitrary scale (often considered as “characteristic”), although the in-
teractions between clouds and radiation occur on a wide range of scale. We
have argued for many years that the extreme variability of the radiation
fields can be best understood in a multifractal framework (Gabriel et al.
1988, Lovejoy and Schertzer 1990, 1991, Schertzer and Lovejoy 1988, 1991).
Indeed, the (scalar) multifractal model of cloud fields, as discussed below,
is capable of respecting the clouds’ texture, clustering, bands and inter-
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mittency, and the non-linear nature of the true dynamical processes at all
scales. The simplest relevant dynamical model corresponds to a stochastic
model of passive clouds, passively advected by a turbulent velocity field,
using coupled cascade processes, non-linearly conserving the fluxes of en-
ergy and concentration variance {Schertzer, Lovejoy 1987, Wilson et al.
1991, Pecknold et al. 1993, 1995).

In order to propagate light in such an atmosphere, different analytical
and numerical methods have been used. There have been some attempts
for (mostly) 2D- cloud fields to capture some of the radiative effects of
clouds (Gabriel et al. 1986 (for 3D), Lovejoy et al. 1989, 1990, Gabriel et
al. 1990, Davis et al. 1990, 1991, 1992) : by evaluating the global radia-
tive responses such as transmittance (T) or reflectance (R) for conservative
scattering, using discrete angle phase functions in the (continuous angle)
Radiative Transfer Equation (Chandrasekhar 1950), i.e. D.A. (Discrete
Angle) Radiative Transfer, on respectively homogeneous, monofractal and
some multifractal fields. More recently, for 1-D multifractal clouds, trans-
port has been described by the diffusion equation (Silas et al. 1993, Love-
joy et al. 1995) and by radiative transfer studying the scattering statistics
of a photon, dependent on the heterogeneous optical depth of the medium
(Lovejoy et al. 1995). Work on related models includes Evans 1993, Barker
1992 and Cahalan 1989.

Our goal is to ascertain the consequences of the radiative transfer equa-
tion on multifractal statistics in a simplified 2D multifractal field, first by
simulation and second by analytical calculation. We give some general
considerations on multifractal fields and simulations in section 2, and on
the radiative transfer equation in section 3. In section 4, we present the
main argument that relates the radiative transfer equation to a fractional
integration and then test it on a plane parallel multifractal atmosphere in
section 5. Section 6 is mainly concerned with 2D-cuts of a multifractal
atmosphere (although most of the results also apply for 3D) and in order
to generalize the relation between the radiative transfer equation and frac-
tional integration, we present the consequences of a D’-integration on a
D-cut of a multifractal field.

2. General description of the multifractal model.

2.1. Physical basis. First we present the physical basis of the mul-
tifractal model. As advocated by Schertzer and Lovejoy (1987), it is im-
portant to first consider the fundamental and rather well defined case of
passive scalar clouds. Although real clouds are not truly passive, their
statistics may in fact be quite similar (Bromsalen 1994), and in any case,
it is the simplest relevant nonlinear model. Such clouds result from the
passive scalar advection of water concentration (p) by a velocity field (v)
in the limit of vanishing viscosity and diffusivity. The dynamical equations
are the incompressible Navier Stokes equations and the equation of passive
advection. They both conserve the fluxes of energy (density €) and scalar
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variance (density x) while effecting a transfer to smaller scales by a cascade
process (introduced by Richardson 1922) down to the inner viscous scale:

. ov?

(2.1) e const
dp*

(2.2) X=—"pr= const

The energy flux is mainly transferred from one scale to a neighboring
scale. Considering the real space fluctuations (increments) at scale £ in the
inertial range (viscosity scale = < £ < L = outer scale) of the fields v and
p, and considering the fluxes as rather homogeneous, we have scaling laws
according to on the one hand Kolmogorov 1941, and on the other Obukhov
1949 and Corrsin 1951:

(2.3) Ay(l) = g'/31/3
(2.4) Ap(l) = M2/
where

(25) @ = XS{QE—I;‘E

is the flux resulting from the non linear interaction between the velocity
and water concentration.

A crucial point of criticism concerning this first approach to turbulence
has been that it was assumed that the energy transfer itself is not a fluc-
tuating quantity. In a more refined scaling theory, Kolmogorov (1962) and
Obukhov (1962) also considered high inhomogeneity in the energy transfer
rate . In order to study this question of inhomogeneity of ¢ and x, we
will use cascade processes which, by iterating a scale invariant step, sys-
tematically reduce the scale of homogeneity to zero. For convenience we
introduce a new variable, the scale ratio A = L/¢ (1 < A < A = Lf7).
At a given resolution A, the corresponding intermediate quantities y» and
g, are highly variable (intermittent) but scale invariant. The flux can be
rewritten:

2 _—1/2
(2.6) Pa Xi! 5)\1{
and equation (2.4):
(2.7) Apy = (,oi’;:a)\'ll'!‘r5
Statistical moments of x and e exhibit multiple scaling:

{e3) ~ AK@
(2.8)
{(x}) m AK@
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K(q) is a convex function and these relations do not affect the validity of
(eq. 2.3) and (eq. 2.4), i.e. intermittency does not change the relationships
between v and €, and p and y.

The nonlinear dependence on ¢ through K& (gq) corresponds to the mul-
tiple scaling and expresses the fact that generally, as discussed below, the
most intense and weakest regions will scale differently.

2.2. General considerations on multifractal fields. A multifrac-
tal field is associated with an infinite hierarchy of singularities v (e) = A7)
(Schertzer and Lovejoy, 1987). When it is stochastic, their frequency of
occurrence can be described by codimensions ¢(), i.e. at a scale ratio A,
the probability (Pr) of the fluctuations of the field diverging faster than
X7 scales as A~°(7) (Schertzer and Lovejoy, 1987):

(2.9) Pr(ex > A7) & A<M

In order to model a multiple scaling (multifractal) field, we seek a field
£ with resolution scale A, satisfying equation (2.8), 1.e

(2.10) (e7) = AK@

Therefore K (g)In A is the second Laplacian characteristic function (or cu-
mulant generating function) of T') = Ingy, which is the generator of the
process.

The functions e¢(y) and K (g) are related to each other, using a Legendre
transform (Parisi and Frish 1985):

(2.11) K(q) = mgX(qv —¢(7)

(2.12) o(y) = max(yq - K(q))

By mixing different processes of the same type, if we seek the limit when
A — o0, we converge by iterations to a universality class. In order to obtain
universality we require generators that are both stable and attractive under
addition. Extremal and stable Levy variables (Levy 1925), characterized
by the Lévy index a (0 € @ < 2), respect these properties. Then K(g) and
¢(v) have the following formulae (Schertzer, Lovejoy 1987):

B Ve L
(2.13) K(g)+ Hg= —=(¢* — g
a—1
(2.14) (v— H) = Cy(=L— + Ly
' B D 101&’ 3
1 1
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In the particular case where o = 1 we have:

(2.16) K(g) + Hq = Ciqlog(q)
(2.17) ely = H) = Crexp(g-— 1)

Parameters designated H,C); and a are of fundamental significance
(Schertzer and Lovejoy 1987) and define the local multifractal hierarchy
around the mean field (¢ = 1). They have the following signification:

e H describes the deviation from conservation of the flux:

(2.18) (Apy) = A~ H

where H = 0 for conservative fields.

e () describes the mean inhomogenetly as it is the codimension of
the mean singularity: Cy = ¢(Cy — H). In the case of conservative
fluxes it is also the order of the mean singularity (and simultane-
ously the fixed point of ¢(7)).

e o represents the degree of multifractality, given by the convexity of
¢(C1) around the mean singularity (C — H), measured by the ra-
dius of curvature: R (y = C1—H) = 93/2Cy which increases with
the range of singularities (starting from zero with the monofractal
B-model).

2.3. Simulation of multifractal clouds. In order to create a mul-
tifractal cloud respecting the symmetries of passive scalar advection, both
discrete or continuous cascades can be used. The more realistic continuous
cascade processes will be used here.

The quantity of interest here is the passive scalar Apy which is related
directly to ¢y through equation (2.7). The field that we produce is the flux
o, and then Apy can be simulated by introducing the extra scaling A}/?
to the field goi”a by fractional integration (power law filtering).

In order to obtain multiscaling, we require the generator to be a noise
with a possible weighting function, having the following properties (Schertzer
and Lovejoy, 1987):

1) The spectrum of the field must scale as k™!, in order to obtain the
scaling behavior: this is a log A divergence of K (g).

2) The generator must be band-limited to wave-number within [1, A];
this is to ensure that for scales smaller than A~!, the field will be
smooth; A~! will therefore be the resolution of the field.

3) The probability distribution of the generator must fall off faster
than exponentially for positive fluctuations. This is to ensure con-
vergence of K (g) for ¢ > 0.

4) 1t must be normalized so that K (1) = 0. This is the condition of
conservation of the mean of the field at varying scales; < gy >= 1.
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F1G. 2. Simulation of a 2D multifractal cloud density field with o = 1.35,C; = 0.75
and H = 1/3 (Cy is chosen arbitrarily but o = 1.35 and H = 1/3 have been estimated
by Tessier et al. 1993). To increase the contrast we show the logarithm of the original
field.

In order to perform simulations, we start with a gaussian white noise or
an extremal asymmetric Lévy distribution with large negative fluctuations
in a finite bandwidth [1, A]: the subgenerator ya(z). In Fourier space, we
filter it by f(k) (= |k|~%/%) in order to make a “1/f noise” and to obtain
the generator I'x(k) = f(k)#(k) (by convention, the Fourier transform of
a given quantity k is denoted k). The conserved quantity @ (z) is then the
exponentiation of ['y(z) and the multifractal density Apy is then obtained
after having taken the 1/3 power of ¢, and having filtered it (in Fourier
space) by |k|~1/3.

Wilson et al. (1991) and Pecknold et al. (1993) developed efficient
algorithms yielding such multifractal clouds. We used them to simulate a
2D-cut of a multifractal cloud density field, and it is represented on Figure
2 with @ = 1.35,C; = 0.75 and H = 1/3 with respect to turbulence. It
simulates a cloud with axes along vertical and horizontal.

3. General considerations on radiative transfer.

3.1. Theory. The radiative field is characterized by a monochromatic
intensity (radiance) I(z,s) at a point 2 and in a direction s, in a medium
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with an absorption coefficient x and a density field p(z). The Radiative
Transfer Equation is then (Chandrasekhar 1950):

(3.1) . s-VI(z,s) = —kp(z)[I(z,s) — j(z,5)]

j(z, s) is the source function and for a scattering! atmosphere, it can be
written in the form:

(32) #z0)= g0 [ [ oes)ila oy

where s, |s| = 1, is a unit vector specifying some direction through a point
z, dw, the solid angle, and o(s, s') the scattering coefficient corresponding
to the fraction of intensity scattered from one direction s to another s’ with
the following condition of normalization:

(3.3) /a’(cosﬂ)i—w <1 with cosf =55
™

In the case of perfect scattering, the scattering coefficient is normalized
to unity and the absorbed radiation reappears totally as scattered radia-
tion. We also have to introduce some relevant quantities depending on the
radiance. First the total intensity:

(34) @ =4 [z,
also the net flux:

(3.5) F(z,s) :% / I(z, s)sdws
and the K-tensor?:

(3.6) K@) =3 [Ieoosds,

Using these quantities we can also express the Radiative Transfer Equation
in its integrated form, considering an isotropic (all directions are identically
distributed) and perfect scattering (absorbed light is totally reemitted)
case. Integrating eq. (3.1) over s, and using definition (3.5) yields equation
(3.7), and taking the tensor product of eq. (3.1) and s, then integrating
over s, with the aid of eq. (3.6), yields equation (3.8):

(3.7) divF = 0

(3.8) divK = _% F

1 The contributions to the source function are only due to scattering.
2 which generalizes the K-integral of Chandrasekhar (1950) (® is the tensorial
product).
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3.2. The radiative transport calculations. The two major prob-
lems in order to simulate the R.T.E. are the differentiation due to the
gradient of intensity and the inherent continuity of the scattering function.
The gradient differentiation can be discretized using finite difference ap-
proximations, however these approximations are only valid in a medium
without large fluctuations, i.e. §7 < 1, where:

(3.9) oT = Kpbz

is the elementary optical depth (or thickness) of the cloud between positions
z and z + 6z. Since multifractal fields have enormous dynamic ranges
(diverging as A — oo) it is therefore important to use numerical schemes
which are stable for occasionally large values of é7.

A classical way to discretize the scattering function was developed
by Chandrasekhar (1950), inspired by Schuster (1905) and Schwartzschild
(1906), who divided the radiative field in 2n streams along 2n directions
and obtained 2n linear equations. Whereas Chandrasekhar (1950) devel-
oped a discretization of directions in order to get a quadrature, i.e. the best
approximation in a given sense for any order n, cruder approximations were
considered in toy models. For instance, D.A. radiative transfer (Lovejoy et
al. 1990) corresponds to the case n=1 or n=2, the phase function describing
scattering only through 90° for n=2.

More elaborated discretizations of directions in the radiative transfer
equation are obtained by Legendre polynomials expansion (Chandrasekhar
1950, in the case of plane parallel atmospheres) or more generally, with
spherical harmonics (Appendix C). The solution is a sum of Legendre poly-
nomials of increasing degree which give angular dependency, weighted by
coefficients dependent on the position in the cloud. The net advantage of
this method is a drastic simplification of the scattering term in the equa-
tion. Another approach is to expand the Green’s function of the radiative
transfer equation with respect to the (rather trivial) Green’s function of
its linearization, i.e. without the scattering term. Despite appealing fea-
tures, this approach, discussed in Appendix B, still faces some theoretical
difficulties.

We now consider the problem of finite differences. The spatially explicit
discretization for the intensity at a position z+8z is (the discrete scattering
coefficient is written o, s, s and s’ being different directions):

(3.10) I(z + 6z,s) = I(z,s) — 67I(z,s) + Z éros 0 I(z, ")

This scheme will lead generally to inconsistencies. Indeed, it is rather
easy to understand when considering a D.A radiative transfer on a 2D cut.
We have only 4 possible directions: s,—s, +s; . The elementary (for a given
§7) transmission T, reflexion R and diffusion S then h ave the corresponding
form:

(311) T=1- 6T(1 2 Js‘s)
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Fic. 3. Transmission field for a cloud density field with o = 1.35,C1 = 0.75 and
H = 1/3 (highest values are black and smallest white).

(3.12) Ri=ibros. s

(313) S= 670’3,34_

It is easy to remark that in case of large fluctuations, 67 — oo, the trans-
mittance will become negative, reflection and diffusion will diverge. In
order to avoid divergences3 induced by finite difference approximations, we
use the semi-implicit scheme (Borde 1991, Borde et al. 1993):

(3.14) I(z,s) =I(z— sbz,s)—6r(l—0,,)(z,s)
+ 3 670, I(z — s'6z,5")
s'#s ¢

We represent in Figures 3 and 4, the radiative field transmitted and
reflected for the multifractal cloud density field represented in Figure 2 with
=1.35, C; = 0.75 and H = 1/3. Initial conditions are a transmission at
unity from above (I = 1) and the three other directions are zero (I =
I+1 = 0). The propagation is vertical.

3 In order to cancel the negative transmittances, A.Davis (private communication)
noted that while using this scheme for a multifractal cloud, he put these negative trans-
mittances to zero.
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FIG. 4. Reflection field for simulated cloud density field with o = 1.35,C1 = 0.75 and
H=1/3.

4. General argument. For largely homogeneous media, there are
the classical optically thin and thick limits. In the case of extreme inho-
mogeneity, as in multifractal atmospheres, thin and thick “parts” of the
medium are so entangled that the two limits might not exist independently
and the two could exist at different scales. However, the distinction could
be relevant by performing a similar analysis in a scale invariant way, i.e.
directly on singularities. For instance, most of the transfer will occur in
areas where the singularities will be rather low, whereas most of the scat-
tering will occur when the singularities are rather high. Therefore one may
expect the existence of a critical singularity separating ‘transparent’ (low
order) singularities where the radiance field mostly flows through, keeping
the trivial scaling of the source flux, and for ‘opaque’ (high order) singulari-
ties where scattering becomes more and more effective, yielding a more and
more non trivial scaling for the radiance field. The field becomes more and
more singular with respect to volume integration. By directly considering
single scattering statistics on multifractal clouds, this has been quantified
in Lovejoy et al. 1995.

It turns out that these rather general arguments are rather similar to
what happens for a fractional integration, as detailed in section 6—yielding



250 CATHERINE NAUD, DANIEL SCHERTZER, AND SHAUN LOVEJOY

a first order multifractal phase transition which occurs when the dimension
D’ of the fractional integration is no longer smoothing out the singularities
of the integrated field, whereas the finite size of the sample induces a second
order phase transition.

This is not surprising since in at least two cases, the radiance inhomo-
geneities are obtained by integration over cloud inhomogeneities (section
5).

5. Multifractal plane parallel and 1D atmospheres.

5.1. Multifractal 1D atmosphere. Going back to section 3, we
consider the radiative transfer equation (eq. 3.1) with emphasis on its
integrated form (eq. 3.7 and eq. 3.8). If we take a one dimensional field
with radiation entering at the top of it, I; being the upgoing intensity and
I_ being the downgoing one, these equations become:

(5.1) %l -0
(52) L) - —kol)F ()
with

(5.3) F(2)=1--1I,
and

(5.4) g A

Thus if we combine (5.3) and (5.4) with (5.1), we find that the K-function
is proportional to the intensity, irrespective of direction. Integrating (5.2),
we obtain the result that intensities are a 1D-integration of the density
field.

5.2. Multifractal plane-parallel atmosphere. To illustrate the gen-
eral argument, we derive the relationship between the intensity field and
the cloud density field, and the corresponding conditions necessary for a
plane paralle] field (which is two dimensional and homogeneous along the
horizontal and heterogeneous along the vertical).

Thus every quantity in the Radiative Transfer Equation only depends
on the vertical coordinate z; and its integrated form becomes (v stands for
vertical):

(5.5) Fy = eonst

oK,
Oz

(56) = _’;PFH
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The flux being constant we can easily integrate eq. (5.6). The right hand
side depends on:

z+Az
(5.7) ' AT =f kp(z')dz'
and we obtain a simple relationship:
(5.8) AK, x AT

Using the Discrete Angle radiative transfer scheme we can express the
relationships between the different quantities in a very simple manner:

(5.9) AF,=0= Al — AL

(5.10) AK, = Al + Al =2Al4
The following relationship is then straightforward:
(5.11) Al o AK,

Another way to have a third equation completing the first two integrated
R.T.E’s is to consider an expansion of the scattering coefficient and inten-
sities as a series of Legendre polynomials (see section 3.2 and Appendix

C):

(5.12) a(s,s) = ZMEPE(COSQ)
: T

(5.13) I(z,8) = Y Pa(cos 6)I(2)

with @ the angle between s and the vertical and a the angle between s and
s'. The three first orders of functions I,(z) depend respectively on J, F
and K (see equations 3.4, 3.5, 3.6). With this method, Chandrasekhar
(1950) pointed out a solution of I(z, s) as a function of F(z,s) and of 7 in

conservative cases. It corresponds to the solution of least anisotropy:

3 1
(5.14) I(r,p) = 3 F[(l—gwl)T‘F#]
with 4 = cos@ = 5 - s’. These two methods, the first combining (5.8) and
(5.11) and the second directly with (5.14) give us the same relationship
between I, and T:

(5.15) Al o< AT

The vertical variation of the light intensity transferred through a plane-
parallel cloud is proportional to the corresponding variation of the optical
depth A7 which is a 1D-integration of the density field p (eq. 5.8).
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6. Full multifractal atmosphere.

6.1. General presentation. We study now a 2D-cut* for convenience
in computation and presentation, with no loss of generality in 3D (this time
we conserve the heterogeneity along the two directions) and we consider
first the analytical aspect.

We might be interested in horizontal averages of the different quan-
tities in order to restrict the dependence on the vertical coordinate only.
Integrating the R.T.E along the horizontal (indicated by overbars) we ob-
tain:

(6.1)

(6.2)

Although equation (6.1) is similar to equation (5.5), equation (6.2) is much
more complicated than equation (5.6) due to the non-linearity introduced
by the correlation term pF%, and there is no simple analytical technique to
determine any general solution.

Going back to the general argument, we hypothesize that for any den-
sity field these equations should have the same consequences as a fractional
integration, i.e. a radiative field should have the same statistics as those
of an integrated field. We have also to be sure that it is related to the full
original multifractal statistics. Thus we study the influence on statistics of
a (fractional) D'-integration on a D-cut of a multifractal field.

6.2. Non trivial consequences of a D'-integration on a D-cut
of a multifractal field. Whereas the exponents ¢(y) and K(q) are pre-
served for any D’-cut of a multifractal process observed in D-space D > D',
they are not preserved for a D'-integration. This can be understood with
the notions of “bare” and “dressed” quantities, which are different due to
the divergence of high order statistical moments for the latter (Schertzer,
Lovejoy 1987). For the same resolution A, the “bare” field is the result of
a multiplicative cascade partially developed from large scales down to A,
whereas the “dressed” field is obtained by integration over A of a completed
cascade. In the limit A — oo, the bare quantity £, becomes singular and
is implicitly given by the measure I1(A) (which converges):

(63) H,\(A)zfﬁszdf)z (=3

where A is a set of dimension D. Corresponding dressed quantities €(q)
(d for dressed) are expressed from the definition of integrated fluxes of the

¢ Physically, a vertical cross section of the atmosphere.
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Krgd
8 1
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F1G. 5. K(g) for the D’-integrated field and the D-field with @ = 2 and C; = 0.75
(H = 0); with D=2 and D’=1.

Slopes:

1 K(q) = —3,0112 4 2,0581¢

2 Kpi(q) + g — 1= —3,0220 + 2,0156¢

8 Kpi(g) + g —1 = .1.0263 + 1.0087q for q < gpr

Captions: + D-integrated field; ® D’-field

bare quantity €y:

Moo (By)

©4) A= vol(B))

where vol(By) = A~? is the D-dimensional volume of a ball of size A™!
and by definition, for a set A,II(A) = limy_, I5(A). These dressed
quantities will display a divergence of moments above a critical order ¢p,
defined by:

(6.5) K(gp) = D(gp — 1)

This situation corresponds to a hyperbolic behaviour of the probability
distribution tails (extreme events) and the dressed characteristic function
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Kl
3 —

=1.54
qD‘

FiG. 6. K(g) for the D’integrated and D-field with o = 1.35 and C; = 0.75 (H = 0).
D=2 and D’=1. Slopes:

{ Kpi(g)+q—1=—1,2464+1,1758¢

2 K(q) = —1,4711+1,1827q

8 Kpi(g)+q—1=—1,0103+0,99967¢ for g < ¢p

Captions: t D-integrated field;® D’-field

of moments K(4)(¢) is of constant slope above ¢p (Schmitt et al. 1994),
whereas below ¢p, it is identical to the bare characteristic function of mo-
ments. This critical order leads a discontinuity in the first derivative of
K(a)(q) and corresponds to a first order multifractal phase transition®.

In our case, instead of integrating the bare field €5 (on a set A of
dimension D) over a given scale £ = %, we choose an arbitrary order of
integration D’ which can be whether integer or fractional with D’ < D.

5 This terminology is borrowed from statistical thermodynamics and corresponds
to an analogy between the moment order g and the inverse temperature 3, as well
as between K(g) and the Massieu potential Z(,ﬁ) See Schertzer and Lovejoy 1995
and references therein, for discussions on first and second order of multifractal phase
transitions, as well as their consequences.
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Fi1G. 7. Codimensions of the D-field and the D’-integrated field for a = 2 and C; = 0.75,
(H =0), for D=2 and D'=1. Caplions:
+ D'integrated field; ® D-field

Characterizing the original field € by K(g) and ¢(y), we correspondingly
characterize the field obtained after D’-integration by Kp:(q) and cp:(y).
We consider the case where D' is an integer and then we decompose A as
follows: A = A’ x B, where A’ is a set of dimension D’ and B is the set of
dimension D-D'. The field of interest here can be obtained as:

(6.6) WA= Y el

Recalling the general expression for trace-moments (Schertzer, Lovejoy,
1987):

(6.7) Trael = / (3)d2P ~ AK(@=(a-1)D
A



256 CATHERINE NAUD, DANIEL SCHERTZER, AND SHAUN LOVEJOY

o)
a@ry o
| +
2]
| i
e g
#
m
N T . .”.M**;;EJ
o@dﬁdﬁcpo
DHM- T T T |
A0 @5 00 05 1py=15 0¥
y =122 |

F1G. 8. Codimensions of the D-field and the D’-iniegrated field with o = 1.35 and
Cy =0.75 (H =0). D=2 and D'=1. Caplions:
1t D'-integrated field;® D-field

Here, the relevant trace-moment should be :

(6.8) Tra(ed) = A K(9)-D'(g—1)

The behaviour of the moment of interest (II3(A’)) is given by this trace-
moment on the one hand, and on the other can define a trace-moment as
in equation (6.7):

(6.9) Trp(Ia(A)) =~ Y A~1P-D(1, (4)9)
B

5 A~(D—D’(q—1}<(HA(Af) 9

By analogy with the general theory (eq. 6.5), we should have a critical
moment gps given by the divergence of the trace-moment of equation (6.8)
in the limit A — oo:

(6.10) K(gp') = D'(gpr — 1)
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FiG. 9. Codimensions of the D-field and the fractional D’-integrated field with o = 2
and C; = 0.75 (H = 0). for D=2 and D’=0.5. Captions:
+ D'integraied field; ® D-field

Above this exponent, the trace-moment diverges.

By definition, we should have :
(6.11) (LA (A"))?) m Apr(0)
Now if we suppose that above the moment of order ¢p/, the moment
(IT5 (A"} is almost equivalent to the trace-moment defined in equation
(6.8), and also that the trace on A is equivalent to taking first a trace
on A’ and then on B, we should obtain:
(6.12) Tra(IIx(A")!) ~ Tra(ed)
and finally that:

(6.13) Kpi(q) —(D—-D')g¢—1)=K(q)—D(g—1)
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Fig. 10. Codimensions of the D-field and the D’-infegrated field with o = 1.35 and
Ci1 =0.75 (H = 0). D=2 and D’=0.5. Captions:
+ D'-integrated field; ° D-field

Then
(6.14) Kp:(q) = K(q) — D'(g—1) forallg > gp

For ¢ < qp, the traces converge which implies that the moments converge
as well and should lose their dependency on A. Thus equation (6.11) implies
Kp+(g) = 0. The main consequence is that the moments calculated for the
D'-integrated field are smoothed out below the ¢p/-moment.

The D-cut ey also exhibits a critical singularity v, (Schertzer et al.
1991), due to finite sample size limitations. This singularity is the maxi-
mum one attainable and is given by :

_ log(N;)
(6.15) c(v:) =D+ Toel)

where Ns is the total number of samples. This expression gives by Leg-
endre transform (eq. 2.11 and 2.12) a critical order of moments ¢,. The
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order ¢, induces a discontinuity in the second derivative of the character-
istic function of moments and represents a second order multifractal phase
transition.

As a conclusion we can say that: below a critical order of moment gpr,
dependent only on the order of fractional integration and representing a
first order multifractal phase transition, Kp(q) is null; above, Kp/(q) is
simply related to K(gq), however, above another critical order of moment g;,
dependent on the sample size and representing a second order multifractal
phase transition, K(g) and Kp:(g) become linear.

Finally, these two critical orders form the range of order of moments
that give information about the statistics of the D-cut from the statistics
of the D’'-integrated field.

In order to illustrate this, for D=2 and D’'=1, we create a D-cut of
a multifractal field (100 realizations), in a conservative case (H = 0) for
convenience and no loss of generality, and C; = 0.75. We integrate it,
then calculate the moments of both fields and their respective K(g). We
represent K (g) and Kp:(¢q) + D'(¢ — 1) (as defined previously) versus ¢
in Figures 5 for « = 2, and 6 for « = 1.35. For both «, we have a
perfect correspondence with theory and we can notice that the range of
¢'s (Agq) between gp and ¢, is very small (for « = 2,A¢ = 0.3 and for
o = 1.35, Ag = 0.46). The usual technique to estimate a and C) (the DTM
or Double Trace Moment) (Lavallée et al. 1991) calculates and analyses
moments of the field after having raised it to a power n at each scale.
The range of 1 chosen should be large enough to preserve accuracy but is
also limited by divergence of moments. Equivalently, the limited range of
relevant ¢’s reduces the range of relevant n’s. In this case, the DTM is not
accurate enough as An is of order of Ag. With the Legendre transform,
we get the correspondingly critical singularities ypr and ;. We can also
represent this relationship with the codimensions ¢(y) and ep:(y):

(6.16) ¥ <ypr => cpi(7) =0
. > YD! —] CDi(’}’) = C("}' + Df) =, D,

as shown on Figures 7 (for @ = 2) and 8 (¢ = 1.35). Once again we
calculate the codimensions ¢(y) and ¢p:(y) and compare them. One can
notice that the behavior for small 7’s makes the codimension representation
more striking than that of K(g).

The calculations for fractional integration (D’ is no longer an integer)
are more tricky because we are compelled to perform a summation on all
the embedded space, i.e. some renormalisation procedures have to be set
properly. However it appears from performing simulations that the be-
haviour of cp:(y) and Kp:(q) are rather similar. As codimensions exhibit
in a clearer manner the expected properties, we represent in Figures 9 and
10 the comparison of codimensions of a field with D=2 and the codimen-
sions of this field D’-integrated with D’ = 0.5. Figure 9 shows a field with
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o = 2 and Figure 10 with « = 1.35.

We have yet to compare the codimensions of simulated radiative fields
and fractionally integrated fields, which would require extensive calcula-
tions on a supercomputer, we would also have to determine the order of
the closest fractional integration.

The bad news is that direct application of the DTM on an integrated
field gives wrong values of & and C;. However, the good news is that the
advantage of fractional integration is that it allows a reverse transformation
(differentiation, see Appendix A and Lavallée et al. 1993 for application on
data) which restores the original statistics of the field. Using this transfor-
mation on any integrated field returns its validity to the DTM technique.

7. Conclusion. In order to preserve its heterogeneity, its scale in-
variance and its physical properties, we describe the atmosphere within a
theoretical framework: the universal multifractal model. Due to its uni-
versality property, it depends only on three fundamental parameters C, «
and H, already experimentally measured for many fields in the atmosphere
(Tessier et al. 1993, Schmitt et al. 1992, 1993, 1994). It seems to be a
pertinent way to deal with all the problems involving clouds that persist
in climatology and for remote sensing, in the sense of dealing directly with
singularities of the heterogeneous water concentration field.

We focused on the case of perfect scattering, as this phenomenon should
be strongly related to the problem of anomalous absorption and inversion
methods for radiances. In order to propagate light in this medium, we ana-
lytically set up different expressions of the solution of the radiative transfer
equation; first a discrete angle scheme, which has also been used for simu-
lation, and also a formulation of the radiance with Legendre polynomials,
spherical harmonics and Green’s functions. The general argument is that
the radiance field is a fractional integration of the cloud density field. It
is shown as being verified for 1D and plane parallel atmospheres and we
would like to generalize it for 2D and 3D cases.

We showed that the idea that (fractional) D'-integration on a D-cut of
a multifractal field : conserves the codimension of the mean C;, the Lévy
index «, and increments the conservation parameter H, is too crude.

D'-integration has important consequences when applied on a mul-
tifractal field. It smoothes the low singularities and reduces the range of
singularities necessary to preserve the validity of our usual estimation tech-
niques for Cy, @ and H. This phenomenon occurs until a critical singularity
corresponding to a first order phase transition. Another singularity due to
sample size limitations, representing a second order multifractal phase tran-
sition, is the upper limit of the range of singularities following the desired
statistics.

Physically i1t means that if the effect of the radiative transfer equa-
tion is similar to a fractional integration, one can only observe directly the
large concentrations of water in clouds, whatever the scale of observation.
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However, considering fractional integration, this effect can be eliminated
by fractional differentiation which returns the initial statistics, a method
that could explain the fact that one can analyze the statistics of the gradi-
ents of radiances instead of the radiances themselves. More generally, the
determination of the critical singularities should help to overcome many
dead-locks encountered until now in inversion methods for radiances.

In order to refine our study, especially if we want to compare fractional
integration and the radiative transfer equation, we would have to make
large simulations on supercomputers. Analytically, a more rigorous foun-
dation could be found by using Green’s functions. Finally an important
part of further study will be dedicated to anomalous absorption.

A. Appendix: Fractional integration and differentiation. Frac-
tional integration and differentiation correspond to extensions to non- in-
t.egler orders (H) of integrations (I7) or differentiations (D7). We denote

by 8 /8tH where t is the argument of the function. These extensions
are rather straightforward in Fourier space or one-dimensional functions,
since integrations—up to a constant of integration discussed below~—~or
differentiations of integer order n, correspond respectively to division or
multiplication by (k)" where k is the wave number (Fourier transforms of
physical space quantities will be denoted by a tilde (~):

(A.1) 7 (5) = D7 () = (k)" F(k)

In the usual physical space, for a non-integer H we obtain an ordinary (i.e.
for integer order n) differentiation (D", positive n) or integration (I77,
negative n) of a convolution:

(A.2) =B = DY

T(n—H)

Here T is the Euler Gamma function:
(A.3) Et)= f e Mut~ dut >0
0

(A.2) is more general than (A.1), since it is written directly in physical
space, but introduces ambiguities in the definition on non-integer integra-
tion or differentiation because they will clearly depend on the domain of
definition of convolutions.

The same techniques can be extended to functions defined on R?, how-
ever the analysis becomes more complex because various combinations of
partial derivatives are now possible. Nevertheless one can consider the
following strongly isotropic extension:

1

—-H; _1Hge_

a(f * e~
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~—H

(A5) I (f) = Dy f = k¥ f(k)

which in fact corresponds to fractional powers of the Laplacian (or of the
Poisson solver):

(4.6) I3 =D f=(-2)""

B. Appendix: Green’s function approach. The strongly nonlin-
ear dependence on directions introduced by multiple scattering can be per-
ceived by first introducing the Green’s function Gy of the partial differential
part of the transfer equation (on a spatial domain D and of boundary 8D):

(B.1) u.VGo(z, 2’ u, ) + kpGo(z, 2’1, 1) = b pr 6w

which allows us to write the transfer equation in a purely integral form:

(B2) Izy)= / Golz, 25w, W)rp(e')jo(!, w')d =2/ d o
aD %54

+ ] Golz, 2w, v')rp(z') (2, w)dd=z'dd= o
D){Sd

(B.3) I(z,u) = Go * (spjo) + Go * (pj)

where jo(z,u) denotes the boundary sources, j(z,u) the scattering sources
(eq. 3.2) and * denotes (generalized) convolutions over positions and/or
directions. By iteration of equations (3.1) and (B.3) we are lead to the
following Von Neumann series:

(B4)  I(z,u) = Go*(kpjo) + Go * (kpo) + Go * (kpjo) + - -

e GQ * [(n‘ip(}") * Gg]‘n * (EPJU) v

which displays the complexity of the multiple scattering. This approach is
rather formal, since on the one hand the convergence of the series may be
questioned and on the other a part of the solution depends on boundary
conditions. We are studying radiative properties of a cloud field occupy-
ing a domain D of large horizontal extension, with boundary conditions
corresponding to a null horizontal flux:

(B.5) F,(z)=0z€dD
or at least (e.g. by imposing cyclic conditions):
(B.6) [ Pahaig =0
ap
On the contrary on a certain sub-domain 8D'(9D D 4D'):
(B.7) F,(z)#20z€8D’

whose unknown values are part of the solution.
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C. Appendix: Legendre polynomials and spherical harmon-
ics. Chandrasekhar (1950), in case of plane-parallel atmosphere, proposed
to express the scattering function and the radiance in terms of Legendre
polynomials. We consider:

(C.1) o(s,s) = ngPg(cos a)with cosa = 5.5’
)

Py(cos @) is a Legendre polynomial of order £ for cos a. Using the addition
theorem for spherical harmonics we get:

(C.2) o(cosa) = Zws Z 2£4+1Y£ 6,0)YP (0, ¢')

m=-£
with unit vectors s and s’ expressed in spherical coordinates, respectively
(0, ) and (¢, ') (their modulus is 1), where Y;"(f, ¢) represents a spheri-
cal harmonic depending on two angles (6, ¢) and of order £, and Y7* (', ¢")
represents the complex conjugate of a spherical harmonic, of order £ and

angles (6',¢"). We choose to express the intensity in terms of spherical
harmonics:

(C:3) I(2,0,0) =YY Lm(@)Y"(0,9)

where the position dependence is represented by z and the direction by
(8,%). Thus we have a coefficient Ir,(z) that depends only on position
and which we can express as:

(C4) lem(@) = [ [ dlcost)dpl(@,0,9)YT" (0,9)

Then replacing these new expressions of I and ¢ we get the following ex-
pression for the scattering term A of equation (3.1):

1
CON / d(cos8')dg'I(z, 0, Yo (8, 0: 6'¢') =

: ] r v rm® 0 o
2{,+1 393)/]“059 de'I(z, 0", " )Yy (6',¢")

Thus from (C.3) we find:

£

(C.6) e ZﬁY?(Q,W)h,m(ﬁ)

m=-—
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Now we consider the radiative transfer equation (3.1), multiplying each
term by Y}, (8, ) and integrating over cos§ and ¢ :

{65 - / dcosbdp(s - gradl(z,0,0))Y R (6,¢) =
~rp(2)(1 = g5l m(2)

We can see that this new expression noticeably simplifies the right hand
side term, however the left hand side part becomes rather complicated,
due to the angular dependence in the vector s. It is possible to express
this term as a function of the coefficients I¢ m(2) by virtue of the spherical
harmonics recurrence formulae. Defining the following coefficients:

(4 m)(£ —m)
@+ 1)(20-1)

_ [+ m)(f4+m-1)
(@8 = \/ @c+1)(20-1)

(CS) agm =

We can express:
(C10)  cosOYT (6,9) = ars1mYer1(0,9) + amYil1(0, )
- 1 !
(C.11) sin § cos Y7 (6,) = 5 ( = bim ¥t (0.30)
+be,—m YT (6,0) = besrme1 YRR (8, 9)

tbet1,-mer Yoa® (0, ‘P))

- ]_ -
(C.12) sinf cos Yy (0,¢) = 5 ( —bem Y53 (6, ¢)
+be,m Y5 (8, 9) = bept,mar Yoyi- (6, 9)

Foeg1,m41 Y}Tlr (6, ‘P))

Thus the final expression of the radiative transfer equation is:

10

(C.13) 232 —bemle—1,m-1(2) +bt,—mIt—1,m+1(z)

—bes1,marde1,me1(2) + begt,—my1leg1,m-1(2)
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14

+ﬁ@ [ —bemle-1,m—1(2) — be,—mIe—1,m4+1(2)

. +bep1,ma1 Lext,me1(2) + beg1,—ma1 I£+1,m—1(£)]

a
+6_z |-a!.+l,mfr€+1,m(£) + ai‘,miré—l,m—l(&'_:)]

= —kp(z)(1 — s

2041

)L‘!,m(&)

This expression is still rather complicated and in order to perform simula-
tions with this formula, we need to find other recurrence formulae.
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