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Abstract. Using a unique data set of three-dimensional drop positions and
masses (the HYDROP experiment), we show that the distribution of liquid water
in rain displays a sharp transition between large scales which follow a passive
scalar-like Corrsin–Obukhov (k−5/3) spectrum and a small-scale statistically
homogeneous white noise regime. We argue that the transition scale lc is the
critical scale where the mean Stokes number (= drop inertial time/turbulent
eddy time) Stl is unity. For five storms, we found lc in the range 45–75 cm
with the corresponding dissipation scale Stη in the range 200–300. Since the
mean interdrop distance was significantly smaller (≈10 cm) than lc we infer
that rain consists of ‘patches’ whose mean liquid water content is determined
by turbulence with each patch being statistically homogeneous. For l > lc, we
have Stl < 1 and due to the observed statistical homogeneity for l < lc, we argue
that we can use Maxey’s relations between drop and wind velocities at coarse
grained resolution lc. From this, we derive equations for the number and mass
densities (n and ρ) and their variance fluxes (ψ and χ). By showing that χ
is dissipated at small scales (with lρ,diss ≈ lc) and ψ over a wide range, we
conclude that ρ should indeed follow Corrsin–Obukhov k−5/3 spectra but that
n should instead follow a k−2 spectrum corresponding to fluctuations scaling
as %ρ ∝ l1/3 and %n ∝ l1/2. While the Corrsin–Obukhov law has never been
observed in rain before, its discovery is perhaps not surprising; in contrast the
%n ≈ l1/2 number density law is quite new. The key difference between the %ρ,
%n laws is the fact that the microphysics (coalescence, breakup) conserves drop
mass, but not numbers of particles. This implies that the timescale for the transfer
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of the density variance flux χ is determined by the strongly scale-dependent
turbulent velocity whereas the timescale for the transfer of the number variance
flux ψ is determined by the weakly scale-dependent drop coalescence speed.
We argue that the l1/2 law may also hold (although in a slightly different form)
for cloud drops. Because they are consequences of symmetries, we expect the
l1/3, l1/2 laws to be robust. Since the large-scale turbulence determines the n
and ρ fields which are the 0th and 1st moments of the drop-size distribution,
they constrain the microphysics: dimensional analysis shows that the cumulative
probability distribution of nondimensional drop mass should be a universal
function dependent only on scale; we confirm this empirically. The combination
of number and mass density laws can be used to develop stochastic compound
multifractal Poisson processes which are useful new tools for studying and
modelling rain. We discuss the implications of this for the rain rate statistics
including a simplified model, which can explain the observed rain rate spectra.
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1. Introduction

Rain is a highly turbulent process yet there is a wide gap between the turbulence and
precipitation research. For example, the classical inertial range turbulence theories of
Kolmogorov (1941) and Corrsin–Obukhov (Obukhov 1949, Corrsin 1951) for respectively
the wind and passive scalar advection in the inertial range, show that turbulence is highly
structured over wide ranges of scales. In the last 25 years, turbulence has increasingly been
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viewed as a highly intermittent, highly heterogeneous process with turbulent energy, passive
scalar variance and other fluxes concentrated into a hierarchy of increasingly sparse fractal
sets; over wide ranges they are multifractal (see e.g. Anselmet (2001) for a recent review).
In contrast, in the precipitation literature it is still common for turbulence to be invoked as
a source of homogenization, an argument used to justify the use of homogeneous (white
noise) Poisson process models of rain. Incredibly, data from our main source of quantitative
rain information—weather radars—are still interpreted with the help of these unrealistic drop
homogeneity assumptions (essentially those of Marshall and Hitschfeld (1953) and Wallace
(1953)). In the notation of this paper, this is tantamount to assuming that the patch scale lc is
kilometric rather than decimetric. Even disdrometer experiments commonly assume that the
turbulence leads to at most weakly heterogeneous drop statistics (e.g. Jameson and Kostinski
1999, Uijlenhoet et al 1999).

Today, high-powered lidars with logarithmic amplifiers and with small (metric scale) pulse
lengths produce turbulent atmospheric data sets of unparalleled space-time resolution. Analysis
of such reflectivity data from aerosols has shown that if the classical turbulence laws are
given multifractal extensions to account for intermittency and scaling anisotropic extensions
to account for atmospheric stratification and scaling wave-like space-time extensions to account
for wave behaviour, that they account remarkably well for the statistics of aerosol pollutants
(Lilley et al 2004, 2007, 2008, Lovejoy et al 2008b, Radkevitch et al 2007a, b, 2008). While
aerosols are not purely passive, they have low Stokes numbers and low sedimentation rates and
were considered as reasonable passive scalar surrogates (Stl ; the Stokes number at scale l, is
the dimensionless ratio of the particle inertial response time to the turbulent fluctuation time).
Of more direct relevance to rain is the fact that the Corrsin–Obukhov law (applied to horizontal
cross-sections) also appears to hold for liquid water concentration in clouds over wide ranges
of scale (Davis et al 1996, Lovejoy and Schertzer 1995a) . In addition, starting in the 1980s, a
growing body of literature has demonstrated that—at least over large enough scales involving
large numbers of drops—rain has nontrivial space–time scaling properties (see e.g. Lovejoy and
Schertzer (1995b) for an early review).

Combining the turbulence theory with raindrop physics involves several related difficulties.
Firstly, rain is particulate. This is usually handled by considering volumes of space large enough
so that many particles are present and spatial averages can be taken. However, since rain is
strongly coupled to the (multifractal) wind field, even these supposedly continuous average
fields turn out to be discontinuous (Lovejoy et al (2003)—at least for scales larger than a
critical scale lc; see below). This means that due to the systematic and strong dependence on
the scale/resolution over which the rate is estimated that the classical treatment of the rain rate
R(x, t) as a mathematical space–time field (without explicit reference to its scale/resolution) is
not valid. Finally, rain does not trivially fit into the classical turbulence framework of passive
scalars: rain moves with speeds different from that of the ambient air (it also modifies the wind
field, but this is a smaller effect).

In recent years, the treatment of particles in flows has seen great progress especially with
the pioneering work of Maxey (1987), Maxey and Riley (1983) relating the particle and flow
velocities. The difficulty is that strictly speaking Maxey’s relations only apply to particles whose
dissipation scale Stokes number Stη < 1, i.e. to small (cloud, aerosol) but not large (rain) drops.
For the former, they have indeed led to fairly rigorous results (see especially Bec et al 2007,
Falkovich and Pumir 2004, 2007, Falkovich et al 2002, 2006), and have notably helped in
explaining the role of turbulence in enhancing the initiation of rain in clouds, especially the
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importance of small vortices in augmenting the coalescence rate. The relations have also been
used to estimate the effects of turbulence on cloud drop collision efficiencies (Franklin et al
2005, 2007, Wang et al 2005a, b, 2006, Pinsky et al 1999, 2001, 2006).

Because rain particles can readily have Stη > 100, rigorous application of Maxey’s
equations are not possible and rain has typically been treated with ad hoc parameterizations.
However, we empirically find that below a critical scale lc—which we argue is the scale such
that Stlc = 1—the observed particle distributions (number and mass) are nearly that of a white
noise. Since for scales l > lc we have Stl < 1, it is therefore tempting to coarse grain the field
over the statistically homogeneous (white noise) range l < lc (with Stl > 1) and apply Maxey’s
equations to the coarse grained fields at l > lc for which Stl < 1. Although the results cannot
be considered theoretically rigorous, we use them to justify phenomenological inertial range
turbulence models and to explain two basic scaling laws the classical Corrsin–Obukhov l1/3 law
for the mass density ρ, and a new l1/2 scaling law for the number density n.

Falkovich and Pumir (2004), Falkovich et al (2006) and Bec et al (2007) have admirably
attacked the full drop/turbulence interaction at its most fundamental level, but progress has been
difficult. Fortunately, at a more phenomenological level, things have been easier. Schertzer and
Lovejoy (1987) proposed that even if rain is not a passive scalar it nevertheless has an associated
scale-by-scale conserved turbulent flux. This proposal was made in analogy with the energy
and passive scalar variance fluxes based on scale invariance symmetries but it lacked a more
explicit, detailed justification. It nevertheless led to a coupled turbulence/rain cascade model
which predicted multifractal rain statistics over wide ranges of scale. Today, this cascade picture
has obtained wide empirical support, particularly with the help of recent large scale analyses
of global satellite radar reflectivities which quantitatively show that from 20 000 km down to
4.3 km, that at these scales the reflectivities (and hence presumably the rain rate) are very
nearly scale-by-scale conserved fluxes (Lovejoy et al 2008a). These global satellite observations
directly show that a cascade structure behaviour is followed to within ±4.6% over nearly
four orders of magnitude. Other related predictions—based essentially on the use of scaling
symmetry arguments—are that rain should have anisotropic (especially stratified) multifractal
statistics (see Lovejoy et al 1987) and that rain should belong to three-parameter universality
classes (Schertzer and Lovejoy 1987, 1997), see the review (Lovejoy and Schertzer 1995b).
However, these empirical studies have been at scales larger than drop scales and outstanding
problems include the characterization of low- and zero-rain rate events and the identification of
the conserved (cascaded) flux itself. In other words, up until now the connection with turbulence
has remained implicit rather than explicit.

In order to bridge the drop physics–turbulence gap and to further pursue phenomenological
approaches, data spanning the drop and turbulence scales were needed. Starting in the 1980s,
various attempts to obtain such data have been made; this includes experiments with chemically
coated blotting paper (Lovejoy and Schertzer 1990) and lidars, (Lovejoy and Schertzer 1991).
The most satisfactory of these was the HYDROP experiment (Desaulniers-Soucy et al 2001)
which involved stereophotography of rain drops in ≈10 m3 volumes typically capturing the
position and size of 5000–20 000 drops. The nominal rain rates were between 2 and 10 mm h−1;
for information about HYDROP see table 1 and Lilley et al (2006), for an example see figure 1.
Analyses to date (Lilley et al 2006, Lovejoy et al 2003) have shown that at scales larger than
a characteristic scale determined by both the turbulence intensity and the drop-size distribution
(DSD) (but typically around 40 cm, see e.g. figure 2), that the liquid water content (LWC; i.e.
the mass density), number density and other statistics behave in a scaling manner as predicted
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Table 1. Various characteristics of the HYDROP dataset. The critical scale lc is
determined from the spectral minimum estimated from the drop mass spectra.
The drop mean relaxation length is estimated from the mean drop diameter L̄
using formula (3b). The energy flux ε is estimated using equation (12).
The Stokes number St, and the sedimentation number Sv are estimated from
equation (13) using the dissipation scale (determined from lc estimated from the
spectral minimum). In all cases, the spread (‘±’) is the storm-to-storm variability
based on three triplets per storm (the exception being storm 207 for which
there were 7 triplets). The mean diameter of the 19 triplets = 1.19 ± .17 mm (i.e.
±14%; this spread is triplet-to-triplet variation, not standard deviation for each
triplet), the mean relaxation distance =1.97 ± 0.29 m (i.e. ±15%), the mean
number of drops is 23 200 ± 11 800 (i.e. ±51%). The numbers of drops are larger
than those in Lilley et al (2006) since all the reconstituted drops were used, not
only those in the more reliable central region. The LWC statistics is for the well-
lit central region only, averaged at 70 cm scale (roughly the relaxation scale,
lc). The coalescence speed was estimated from the formula ϕl = g−1/4l1/4

R ε
1/2
l .

The mean interdrop relaxation speed difference %vR,drop is the mean difference
in relaxation speed averaged over all pairs of drops in the volume. %vR,n and
%vR,ρ are calculated by averaging the relaxation speed over cubical regions
70 cm on a side, (weighted by n and ρ, respectively) and then calculating the
mean differences between the neighouring ‘cubes’ (70 cm is roughly lc so that
the differences are at the small-scale end of the density variance flux cascade).

Storm number 207 295 229 142 145

Number of triplets/scenes 7.0 3.0 3.0 3.0 3.0
Wind speed at 300 m 27.5 10 17.5 2.5 22.5

(in m s−1)

Nominal rain rate (mm h−1) 6–10 1.4–2.2 2–4 2–4 1.4–2.2
L(mm) 1.29 ± 0.12 1.24 ± 0.06 1.01 ± 0.02 0.98 ± 0.09 1.36 ± 0.07
Lc(m) 0.49 ± 0.08 0.53 ± 0.09 0.44 ± 0.06 0.75 ± 0.11 0.59 ± 0.07
lcs(m) 1.5 ± 2.8 1.3 ± 1.9 1.1 ± 0.9 0.8 ± 1.2 1.5 ± 1.2
lR(m) 2.18 ± 0.20 2.09 ± 0.10 1.71 ± 0.03 1.65 ± 0.15 2.30 ± 0.12
ε(m2 s−3) 2.3 ± 1.3 2.8 ± 1.3 2.7 ± 0.9 8.1 ± 4.2 3.1 ± 1.1
Stη 180 ± 60 200 ± 50 180 ± 30 300 ± 90 220 ± 40
Svη 60 ± 17 56 ± 11 51 ± 6 38 ± 10 57 ± 8
Svlc 4.4 ± 3.7 4.0 ± 2.4 3.9 ± 1.4 2.2 ± 1.4 3.9 ± 1.5
Number of drops 19 300 ± 13 100 21 400 ± 1400 33 000 ± 8200 34 800 ± 9800 13 000 ± 2500
Mean LWC at 70 cm 0.50 ± 0.63 0.44 ± 0.42 0.39 ± 0.57 2.40 ± 1.35 0.44 ± 0.58

scale (g m−3)

l = 70 cm vR,n (m s−1) 4.45 ± 0.20 4.51 ± 0.09 3.97 ± 0.07 3.85 ± 0.18 4.56 ± 0.15
l = 70 cm vR,ρ (m s−1) 4.87 ± 0.21 4.84 ± 0.11 4.37 ± 0.13 6.11 ± 0.03 5.14 ± 0.16
Coalescence speed ϕl (m s−1) 1.04 ± 0.33 1.14 ± 0.28 1.06 ± 0.18 1.82 ± 0.53 1.23 ± 0.24
Mean interdrop difference 0.64 ± 0.05 0.63 ± 0.06 0.58 ± 0.14 1.22 ± 0.02 0.85 ± 0.03

in relaxation speed:
%vR,drop (m s−1)

%vR,n at l = 70 cm (m s−1) 0.30 ± 0.06 0.25 ± 0.05 0.18 ± 0.02 0.46 ± 0.05 0.40 ± 0.01
%vR,n at l = 70 cm (m s−1) 0.37 ± 0.08 0.26 ± 0.05 0.25 ± 0.02 0.90 ± 0.04 0.52 ± 0.07
%ul at l = 70 cm (m s−1) 1.17 ± 0.19 1.25 ± 0.17 1.24 ± 0.12 1.78 ± 0.27 1.29 ± 0.14

New Journal of Physics 10 (2008) 075017 (http://www.njp.org/)

http://www.njp.org/


6

Figure 1. Second scene from experiment f295. For clarity only the 10% largest
drops are shown, only the relative sizes and positions of the drops are correct,
the colours code the size of the drops. The boundaries are defined by the flash
lamps used for lighting the drops and by the depth of field of the photographs.

by the cascade theories. While these results suggest that rain is strongly coupled to the turbulent
wind field at scales larger than 40 cm (potentially explaining the multifractal properties of
rain observed at much larger scales), the analyses did not find an explicit connection with the
standard turbulence theory. See also Marshak et al (2005) for similar empirical results for cloud
drops.

The key new result of this paper concerns the fluctuations in the particle number density
%n, which we find—both theoretically and empirically—follows a new %n ≈ l1/2 law with
prefactors depending on turbulent fluxes. This explicit link between the particle number
density fluctuations and turbulence is expected to hold under fairly general circumstances
(including perhaps for small cloud drops) and provides the basis for constructing compound
multifractal–Poisson processes. While the traditional approach to drop modelling (see e.g.
Khain and Pinsky 1995, Srivastava and Passarelli 1980) is to hypothesize specific parametric
forms for the DSD and then to assume spatial homogeneity in the horizontal and smooth
variations in the vertical, our approach on the contrary assumes extreme turbulent-induced
variability governed by the turbulent cascade processes and allows the DSD to be constrained
by the turbulent fields n and ρ, i.e. by the 0th and 1st moments of the number size density (or
equivalently on the 0th and 3rd moments of the DSD).

This paper is structured as follows. In section 2, we discuss the relation between the drop
and wind speeds and use this to interpret the break in the liquid water spectrum at scale lc as
the transition between turbulent-dominated (large) scales and drop inertia-dominated (small)
scales; the scale at which the Stokes number Stlc≈ 1. This interpretation allows us to estimate
the turbulent dissipation rate and the dissipation scale Stokes number Stη, which we find of the
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Figure 2. This shows the 3D isotropic (angle-integrated) spectrum of the 19
stereophotographic drop reconstructions, for ρ, the particle mass density. Each
of the five storms had 3–7 ‘scenes’ (from matched stereographic triplets)
with ≈5000−40 000 drops (see table 1) each taken over a 15–30 min period
(orange = f207, yellow = f295, green = f229, bluegreen = f142 and cyan =
f145; the numbers refer to the different storms). The data were taken from
regions roughly 4.4 × 4.4 × 9.2 m3 in extent (slight changes in the geometry
were made between storms). The region was broken into 1283 cells (3.4 ×
3.4 × 7.2 cm2, geometric mean = 4.4 cm); we use the approximation that the
extreme low wavenumber (log10k = 0) corresponds to the geometric mean, i.e.
5.6 m, the minima correspond to about 40–70 cm; see table 2). The single lowest
wavenumbers (k = 1) are not shown since the largest scales are nonuniform due
to poor lighting and focus on the edges. The reference lines have slopes −5/3,
+2, i.e. the theoretical values for the Corrsin–Obukhov (l1/3) law and white noise,
respectively.

order ≈200–300. At large scales l > lc, where the raindrops have low Stokes numbers (Stl < 1),
we argue that Maxey’s relations can be used. Using them in section 3, we derive the basic
equations for number density, mass density, the corresponding flux densities (including rain
rate) and the coalescence speed. In section 4, we derive the l1/3 and l1/2 laws for mass and
number densities respectively, and verify the results empirically on the HYDROP data; and in
section 5, we conclude the paper.

2. The connection between drops and turbulence

2.1. Drop relaxation times, distances and velocities

Raindrops are inertial particles moving in turbulent flows under the influence of gravity. For an
individual drop moving with velocity v in a wind field u, Newton’s second law implies:

dv

dt
= g +

g
VR

δv

(∣∣δv
∣∣

VR

)ηd−1

; δv = u − v, (1)
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where we have taken the downward acceleration of gravity (g) as positive, and assumed a power
law drag with exponent ηd. VR(M) is the ‘relaxation velocity’ of a drop mass M and δv is the
difference in the particle and wind velocities. In still air, after an infinite time, VR is the terminal
drop velocity (we use capitals for single drop properties, lower case for various averages). The
corresponding relaxation times TR(M) and distances LR(M) are given by:

TR = VR

g
,

LR = V 2
R

g
.

(2)

These are the typical time and length scales over which the drops adjust their velocities to the
ambient air flow. According to classical dimensional analysis for the drag on rigid bodies, the
low Reynolds number regime is independent of fluid density while the high Reynolds number
(Re) regime is independent of fluid viscosity. This implies that in the first regime, the drag
is linear (ηd = 1; ‘Stokes flow’), while in the second, it is quadratic (ηd = 2) so that the drag
coefficient (CD) is constant. For these regimes we have:

TR = L2ρw

ηv
; LR = gL4ρ2

w

η2
v

; VR = gL2ρw

ηv
; Re % 1, (3a)

TR =
(

αDL
g

)1/2

; LR = αDL; VR = (αDgL)1/2; αD =
(

π

3CD

) (
ρw

ρa

)
; Re & 1, (3b)

where L is the drop diameter, ρw and ρa are the densities of water and air, CD is the standard
drag coefficient and ηv is the dynamic viscosity. In the Stokes flow, we have ignored numerical
factors of order unity.

In order to decide which relations are more appropriate for rain drops, consider the theory
and experiment reported in Le Clair et al (1972). They show that for spheres the high Re limit
is obtained roughly for Re = 102 where CD ≈ 1 (although it decreases by a factor of 2–3 as
Re increases to ≈5000). According to semi-empirical results presented in Pruppacher and Klett
(1997), Re ≈ 1 is attained for drops with diameter (L) ≈ 0.1 mm, whereas Re = 102 is attained
for drops diameter 0.5 mm. On this basis, Pruppacher proposes breaking the fall speed dynamics
into three regimes with (roughly) L < 0.01 mm, 0.01 < L < 1 mm and L > 1 mm. The small
L ‘Stokes’ regime has ηd = 1, the second regime is intermediate and the third (high Re) regime
has roughly ηd = 2 up to a ‘saturation’ at L ≈ 4 mm. Although for rain, this regime is more
complicated than for rigid spheres due to both drop flattening and internal drop flow dynamics,
according to data and numerics reviewed in Pruppacher and Klett (1997), the basic predictions
of the ηd = 2 drag law (VR ∝ L1/2 and LR = αDL) are reasonably well respected over the range
0.5–4 mm. For example, using Pruppacher’s data on LR at 700 mb and a drag coefficient of
CD = 0.8, the predictions of equation (3b) are verified to within ±25% over this range. Since at
20 ◦C, pressure = 1 atmosphere, ρw/ρa ≈ 1.29 × 103, this implies αD = 1690, so that for drops
with diameters 0.2 < L < 4 mm (the range detected by the HYDROP experiment discussed
below), we expect LR to be typically of the order 40 cm to 7 m (hence, TR is in the range
0.2–0.8 s).
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2.2. Empirical estimates of lc using drop stereophotography

The transition from rain drop behaviour dominated by turbulence to behaviour dominated by
drop inertia will occur at a scale Lc, which is determined by both LR and the level of turbulence.
Before discussing other aspects of the turbulence theory, we give the direct estimates of Lc in
rain averaged over the drop sizes (denoted lc) using the HYDROP data.

We recall that each of the five HYDROP storms had 3–7 ‘reconstructions’ (from matched
stereographic triplets) each with 5000–20 000 drops and taken over a 15–45 min period (see
table 1). By ‘reconstruction’ we mean the determination of the position and size of nearly all
(>90%) of the particles >0.2 mm in diameter. In Lilley et al (2006), the scale dependence of
various densities (number, liquid water, etc) was estimated by spatial averaging over spheres of
increasing diameter. It was noted that while statistical multiscaling—characteristic of turbulent
cascade processes—was evident at scales greater than about 40 cm or so (depending somewhat
on the reconstruction)—that at smaller scales there was no clear behaviour. Therefore, in order
to get a clear statistical characterization over the full range of available scales, we turn to Fourier
techniques.

To estimate the spectrum, we first discretize the liquid water density ρ on a grid (whose
pixel resolution ≈4.4 cm corresponds to the accuracy with which the positions were estimated),
and then we determine the discrete estimate of the Fourier transform:

ρ̃η

(
k
)
=

∫
eik·xρη

(
x
)

d3x . (4)

We introduce the power η for future use since by varying η we can conveniently consider
various fields: for example, if we adopt the convention that x0 = 1 for all x > 0 and x0 = 0 for
x = 0, and we discretize ρη, then η = 0 corresponds to the particle number density (in roughly
8% of the cases where there is more than one drop in a ‘pixel’, we sum ρη over all the particles
in the pixel). Similarly, η = 1 is the usual mass density, η = 7/6 is proportional to the ‘nominal
rain rate’ (using VR for fall speeds and equation (3b)) and η = 2 is the radar reflectivity factor.
We may note that the discretization scale used here corresponds roughly to the accuracy of
the position measurement; its use prevents aliasing of the spectrum (which would occur, for
example, if spuriously precise positions were used).

From ρ̃η

(
k
)

, we then determine the power spectral density:

Pη

(
k
)
=

〈∣∣ρ̃η

(
k
)∣∣2

〉
, (5)

where the ‘〈.〉’ indicates ensemble averaging, here estimated by averaging over the different
reconstructions for each storm. Finally, the isotropic spectrum Eη is estimated by angle
integration in Fourier space:

Eη (k) =
∫

k′=|k|
Pη

(
k ′) d3k ′. (6)

Figure 2 shows the 3D isotropic (angle-averaged) spectrum of the 19 stereophotographic
drop reconstructions averaged over each of the five storms for η = 1 (the usual mass density).
The low-wavenumber reference line indicates the theoretical Corrsin–Obukhov k−5/3 angle-
integrated spectrum. Since for Gaussian white noise Pη is constant, in d-dimensional space
the angle-integrated spectrum varies as kd−1 (here d = 3, hence as k2) and is indicated by the
high-wavenumber reference line. It can be seen that the transition between the passive scalar
behaviour—where the drops are highly influenced by the turbulence and the high-wavenumber
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Figure 3. For each storm, this shows the mean distance Lmin (in m)
corresponding to the minimum of the spectrum of ρη as a function of the
order of moment η (from top to bottom on the right-hand side: the experiments
(corresponding to different storms) numbered 142, 145, 295, 207, 229—see
table 1 for descriptions). In the text, the value of Lmin for η = 1 is taken as an
estimate of the critical scale lc at which St = 1. Since higher η values weight the
spectra to the larger drops, so there is a slow increase of lc with increasing η. The
main exception is the 142 case, which is the most dominated by small drops and
shows a near doubling in lc when comparing the number density (η = 0) with the
mass density (η = 1).

regime, where the drops are totally chaotic (white noise) is quite sharp and occurs at critical
scales lc of roughly 40–75 cm (see table 1). The overall physical interpretation of the spectrum
is the following: due to the turbulent wind field, the drops are concentrated in patches of size lc

(each with many drops; the mean interdrop distance here being ≈10 cm), but within each small
patch, due to the transition to a white noise spectrum—the drop distribution is fairly uniform.
This suggests a simple model (explored below) of the drop collision microphysics as one of
statistically independent drops colliding within patches whose overall drop number and water
concentration varies tremendously from patch to patch due to the turbulence. In this way, the
turbulence can drive the process and constrain the microphysics.

It is significant that the transition is very well pronounced: even though the measured drop
diameters varied by a factor of about ≈20, the transition systematically occurs over a range of
factors ≈1.5 or so in scale. Figure 3 shows the effect of the relatively small albeit systematic
changes in the positions of the spectral minima that occur by weighting the spectra more towards
the small drops (small η), or the large drops (large η). Section 4 and figure 8 explore the
spectra for η = 0 (corresponding to the number density) in more detail and table 1 gives some
information about the various experimental conditions as well as parameter estimates obtained
from the spectra.

More details on the HYDROP experiment can be found in Desaulniers-Soucy et al (2001),
and for these datasets see Lilley et al (2006). The main differences between the part of the data
analysed in the latter and that analysed below is that in the latter, a very conservative choice
of sampling volume was used. By using only data from the region best lit and most sharply
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in focus, >90% of the drops with diameter >0.2 mm were identified. In this study, we sought
to get a somewhat wider range of scales with as many drops as possible by exploiting the
fact that Fourier techniques are very insensitive (except at the lowest wavenumbers) to slow
falloffs in the sensitivity (and hence drop concentrations) near the edges of the scene (this
is a kind of empirically produced spectral ‘windowing’ close to the numerical filters used to
reduce leakage in spectral estimates). We therefore took all the data in a roughly rectangular
region about 4.4 × 4.4 × 9.2 m3 in size (geometric mean = 5.6 m), and then analysed only the
spectrum for wavenumbers k > 2 (i.e. spatial scales !2.3 m). This somewhat larger scene size
with respect to the previous HYDROP analyses yielded an increase in the range of scales by a
factor of about 2.8 and about 2–3 times more drops.

2.3. Applying Maxey’s equations to rain drops in the turbulent inertial range

In regimes of ‘weak turbulence’ (where
∣∣∣ Du

Dt

∣∣∣ % g), and power law drag (ηd > 0), we may follow
Maxey (1987), Maxey and Riley (1983), Falkovich and Pumir (2004) and Falkovich et al (2006)
(who considered ηd = 1), and obtain an expansion for the drop velocity v in terms of the wind
velocity u:

v ≈ u + TR

(
g − Du

Dt

)
+ O

(
T 2

R
D2u
Dt2

)
, (7)

although he only investigated the ηd = 1 case in detail, Maxey (1987) pointed out the
insensitivity of this result to the exact form of the drag law (up to the first order, it is independent
of ηd; note that we use the notation D/Dt = ∂/∂t + u · ∇ for the Lagrangian derivative of the
wind). We should note that this equation implies that even if the wind field is incompressible,
the drop velocity field is compressible:

∇ · v = VR

g
∇ ·

(
u · ∇u

)
= VR

g

(
ω2

2
− s2

)
, (8)

where ω is the vorticity, and s is the strain rate (Maxey 1987); this relation will be used below.
In turbulent flows in the turbulent inertial range, we may use the standard turbulence

estimate of derivatives at scale l:∣∣∣∣
Dnu
Dtn

∣∣∣∣
l
≈ ε

1/2
l τ

1/2−n
e,l ≈ %ulτ

−n
e,l ; τe,l = l2/3ε

−1/3
l , (9)

where τe,l = l/%ul is the eddy turnover time (i.e. eddy lifetime) for eddies of size l. Applying
this in equation (7) we obtain:

v ≈ u + VR
.z − Stl%ul + O

(
St2

l

)
%ul; Stl = TR

τe,l
, (10a)

v ≈ u +
(

Svl
.z − Stl%̂ul

)
%ul + O

(
St2

l

)
%ul; Svl = VR

%ul
; %̂ul =

%ul

%ul
, (10b)

where Stl is the scale l Stokes number evaluated at the eddy turnover time: τe,l = l2/3ε
−1/3
l

and Svl is the scale l ‘sedimentation number’ (see e.g. Grabowski and Vaillancourt 1999).
We see that at least if l is the dissipation scale η and Stl < 1, the series converge. In what
follows, we make the plausible but unproven assumption that equation (10) continues to be
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approximately true for drop inertial scales l as long as the derivatives are estimated at scale
l " lc (see, however, Falkovich and Pumir 2007, Falkovich et al 2002, Wilkinson et al 2006).
In this case, the observed statistical homogeneity (the white noise for l < lc in figure 2) of the
scales with l < lc makes the assumption plausible.

In the turbulent inertial range, we obtain:

Stl = TRl−2/3ε
2/3
l ,

Svl = Stl gl1/3ε
−2/3
l = Stl

g
%al

; %al = %ul

τe.l
= l−1/3ε

2/3
l , (11)

where %al is the acceleration fluctuation. Since Svl ∝ Stll1/3, we see that at large enough
scales l, the sedimentation effect will dominate the drop inertial effects. However, if we seek to
interpret the scale break in the spectra (figure 2), then it is the drop velocity fluctuations %vl

as functions scale l we must consider, not vl directly. From equation (10a) we see that as long
as the fluctuations in the sedimentation velocity %vR,l , are small compared to the fluctuations
in the turbulent velocity (i.e. as long %vR,l % %ul) then the critical break scale lc in figure 2
is the scale at which Stl = 1 so that for l < lc, the drop inertia is dominant. Although the
common meteorological assumption that vR is horizontally homogeneous (and hence %vR,l ≈ 0)
is unjustified (cf figure 5), it seems at least plausible that it is smaller than %ul . The fluctuation
%vl can be estimated either by first averaging equation (10a) over a scale l and then taking
differences between neighbouring l sized patches, or by taking the average difference between
%vR for drops separated by distance l or less. The results of both of these definitions are given
in table 1; we see that at l = 70 cm (≈ lc) in table 1; the former is about a factor 2 smaller than
the latter, and we see below that in turn this is about a factor 2 smaller than %ul . To compare
this with %ul , we need an estimate of the turbulent energy flux ε. As indicated below, this can
be obtained by neglecting %vR,l in comparison with %ul using the condition Stl,c = 1. When
this is done (table 1) we find that %ulc is indeed 2–6 times larger than %vR,l . This is an ex post
facto justification of the assumption that at lc, %vR,l is negligible with respect to %ul .

If this interpretation is correct, lc is the critical decoupling scale at which the velocity and
acceleration terms in equation (7) are of equal magnitude. It is also the scale at which (according
to theoretical considerations in Wang and Maxey (1993) and experimental results in Fessler et al
(1994), we expect the maximum effect in causing preferential concentration of particles). With
this assumption, using equation (11) with the drop averaged lR, we see that the critical scale lc

at which Stl = 1 is:

lc =
(

lR

g

)3/4

ε
1/2
lc

= t3/2
R ε

1/2
lc

, (12)

(tR is the relaxation time averaged over the drops). If we now consider the typical velocity
difference %vl between two drops separated by a distance l:

%vl ≈ %ul; l & lc (Stl % 1) ,

%vl ≈ tR%al; l % lc (Stl & 1) , (13)

where %al is the fluctuation (difference) in acceleration of the wind at the scale and we have
ignored higher order velocity derivatives in the l % lc case. As discussed above, the l & lc

result follows if we assume that the spatially averaged fluctuations in vR at scale l tend to
either decrease as l increases or at least increase more slowly with scale than the turbulent
%ul which increases as l1/3. Empirically it implies that the drop velocity spectrum is the same
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as the Kolmogorov wind spectrum, and thus at least compatible with the observed Corrsin–
Obukhov passive scalar spectrum, figure 2. We have assumed that the sedimentation term gives
a small contribution (i.e. %vR ≈ 0 even if the drop averaged mean relaxation velocity vR is not
negligible; see section 3 for more discussion of this). Also, encouraged by the relatively sharply
defined spectral minimum in figure 2, we have used a mean scale lc rather than a more precise
individual drop diameter (equivalently mass)-dependent relation.

For scales l > lc since the drop velocity fluctuation statistics are essentially the same as
those for the wind (i.e. they are both k−5/3), it is plausible that equation (13) can explain the
observed rain drop mass density spectrum (figure 2). Similarly, at scales l < lc, where the
differences between particle velocities %v depend on the highly variable wind acceleration
gradients, it is perhaps not so surprising that the spectrum follows Gaussian white noise: the drop
inertia dominated regime is ‘chaotic’. It is therefore natural to associate the scale at which the
spectral minimum occurs with the transition equation (13) from viscous forces to drop inertial
forces at the high wavenumbers.

The interpretation of the break in figure 2 as the critical drop inertial (Stl = 1) scale is
sufficiently important that it is worth mentioning that an alternative transition between viscous
and gravitational forces (i.e. sedimentation) is sometimes invoked (for much smaller particles,
cloud drops, see e.g. Grabowski and Vaillancourt (1999), and see Lilley et al (2006) for a similar
argument). In this case, the critical sedimentation scale lcs is obtained by balancing the drop
size-averaged relaxation (‘terminal’) velocity vR with the turbulent velocity gradient ε

1/3
lcs

l1/3
cs .

This leads to the following estimate of the critical sedimentation scale lcs:

lcs = l3/2
R g3/2ε−1

l . (14)

To distinguish the two explanations for the spectral transition (i.e. at lc or at lcs?), we can use the
overall mean values lR ≈ 2.0 m, tR = 0.45 s, vR = 4.27 m s−1 (these are the means of lR, vR,n,see
table 1; v2

R/ lR is not exactly equal to g since vR and lR are averages of different moments of the
drop volumes). These values combined with the use of the spectral minima to estimate lc and
lcs, and with equations (12) and (14) can be used to estimate the intensity of the turbulence (ε)
implied by the two different scenarios (i.e. Stlc = 1 or Svlcs= 1). Assuming the critical spectral
scale Lmin is lc (equation (12)), the results for individual storms are shown in table 1; they are all
not too far from ε ≈ 4 m2 s−3, which is a large but still plausible value (the value ε = 10−4 m2 s−3

is often considered a typical atmospheric value; however, the intermittency is huge so that
during storms values several orders of magnitude larger may indeed be realistic: Grabowski
and Vaillancourt (1999) suggest that ε = 0.1 m2 s−3 is a large but plausible value in clouds but
they do not mention the scale at which the value should apply: due to intermittency, large values
are more common at smaller scales and values in rain are plausibly larger than that in clouds).
In comparison, using equation (14) and identifying the spectral minimum instead with lcs rather
than with lc, we obtain much larger and probably unrealistic values: the overall mean being
ε ≈ 160 m2 s−3. This makes it unlikely that equation (14) could explain the observations. We
therefore conclude that equation (12) is indeed valid. With this assumption, we can estimate
Svlc, the sedimentation number at the decoupling scale lc (table 1); the overall mean is ≈3.7.
This indicates that the sedimentation scale lcs is larger than lc (see table 1); the overall mean is
≈1.2 m, i.e. 2–3 times larger than lc.

If we accept the position of the spectral minima as an estimate lc, then we can also estimate
the values Stη and Svη, i.e. the values at the dissipation scale lη = ν3/4ε−1/4. First with kinematic
viscosity η ≈ 1.5 × 10−5 m2 s−3 (roughly the value for air at 20 ◦C, pressure 1 atmosphere),
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we obtain an overall average lη ≈ 170 µm (see table 1). There is surprisingly little storm-to-
storm spread so that the overall mean values Stη ≈ 220 and Svη ≈ 60 give a reasonable idea
of the relative magnitudes (table 1). We can now compare these values with those of Bec et al
(2007), who performed large scale numerical simulations of monodisperse inertial particles
in 3D hydrodynamic turbulence (see also the experimental results of Aliseda et al (2002)).
The main differences were: (i) the Stokes numbers in the simulations were much smaller;
0.16 < Stη < 3.5, (ii) there was no gravity (so Svη = 0), (iii) that the particles were small
enough so as to be in the Stokes flow (ηd = 1) range (in order to simulate cloud drops). Perhaps
the most important result was the finding that particles cluster right through the turbulent inertial
range. Characterizing the clustering by a fractal correlation dimension (D2), Bec et al (2007)
found that D2 is dependent on Stη (hence on drop size). Indeed, the correlation codimension
(= 3 − D2) varied from about 0.7 for Stη = 1 to 0 for Stη ≈ 3.5 suggesting that with the full mix
of particle sizes, the number density measure would be multifractal as found in the HYDROP
experiment (Lilley et al 2006).

3. The basic equations

3.1. The drop mass density function N

Having argued that Stl < 1 at scales l > lc, we now systematically use equation (7) to relate the
turbulent wind field to the drop velocities. To do this, we first introduce N = N (M, x, t), which
is the drop-mass density function, i.e. the number of drops with mass between M and M + dM
per unit volume of space at location x , time t (the corresponding function in terms of drop radius
the DSD). Ignoring condensation and drop break up, the usual coalescence (Smoluchowski)
equation (used, for example, in cloud and rain modelling (Srivastava and Passarelli 1980)) can
be written:

∂ N
∂t

= 〈N |H |N 〉. (15)

The right-hand side term is the coalescence operator in compact notation (see Lovejoy et al
2004), 〈N1|H |N2〉:

〈N1|H |N2〉 = 1
2

∫ M

0
H

(
M − M ′, M, x, t

)
N1

(
M − M ′, x, t

)
N2

(
M ′, x, t

)
dM ′

−N1
(
M, x, t

) ∫ ∞

0
H

(
M ′, M, x, t

)
N2

(
M ′, x, t

)
dM ′. (16)

If we now assume that the drop–drop collision mechanism is space–time independent, then
the full coalescence kernel H can be been factored H

(
M ′, M, x, t

)
= ϕ

(
x, t

)
h (M ′, M)

so that space–time variations in the coalescence rate are accounted for by ϕ, which is
the coalescence speed and h(M ′, M) is a time-independent kernel characterizing the drop
interaction mechanism; we return to this in section 3.4. The budget equation for N is thus:

∂ N
∂t

= −∇ · (Nv) + ϕ(x, t)〈N |h|N 〉. (17)

The validity of this turbulence–drop coalescence equation can be verified by integrating
over a volume; the left-hand side is the change in the volume of particles between M and
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M + dM , the first right-hand side term is the flux of such particles across the bounding
surface, the second is the change in the number within the volume due to coalescence. In this
equation, v(M, x, t) is the velocity of a particle mass M . While this equation was invoked
in Falkovich and Pumir (2004), only the static v = 0 case was studied. Equation (15) is also
used in conventional DSD modelling but typically with the additional assumption of horizontal
homogeneity (only smooth vertical variability is considered). Although a great deal of effort
has gone into studying various possible kernels, few attempts have been made to study the
constraints placed on the microphysics by the larger scale turbulence dynamics—our goal here.

3.2. The mass and number densities and fluxes

We now consider the first two moments of the turbulence–drop coalescence equation (15); the
number density (n) and drop mass density (ρ), as well as their fluxes: the mass flux r and the
number flux N :

n(x, t) =
∫ ∞

0
N (M, x, t) dM; ρ(x, t) =

∫ ∞

0
N (M, x, t)MdM, (18)

N=
∫

v(M, x, t)N (M, x, t) dM, (19)

r =
∫

Mv
(
M, x, t

)
N

(
M, x, t

)
dM. (20)

Note that the vertical component of r is the usual rain rate; R = rz (see section 3.4).
By respectively integrating equation (17) with respect to M and by multiplying

equation (17) by M and then by integrating with respect to M , we can obtain the budget
equations for the particle number and mass densities:

∂n
∂t

= −∇ ·N+ ϕ

∫ ∞

0
〈N |h|N 〉 dM, (21)

∂ρ

∂t
= −∇ · r , (22)

where we have used the fact that the coalescence operator conserves drop mass:
∫ ∞

0
〈N |h|N 〉MdM = 0. (23)

We see that because of equation (23), coalescence is not directly relevant for the ρ equation (22)
whereas it is relevant for the n equation (21). Also for the same reasons, taking into account drop
break up will add a new term to equation (21) but will not affect equation (22).

We now introduce the average relaxation velocities vR,n and vR,ρ weighted by number and
mass densities, respectively:

vR,n = 1
n

∫
VR(M)N (M) dM, (24)

vR,ρ = 1
ρ

∫
VR(M)N (M)MdM . (25)
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Figure 4. This shows scatterplots for the 70 cm resolution estimates of vR,ρ

versus vR,n (in m s−1) for the five storms (yellow = 207, green = 295, blue =
229, purple = 142 and red = 145). The points clustered along the bisectrix have
a single drop in the averaging volumes.

Substituting v from equation (7) into equations (19) and (20) and using definitions (24) and
(25), we obtain:

N= nαn; αn = u + vR,n

(
.z − 1

g
Du
Dt

)
, (26)

r = ραρ; αρ = u + vR,ρ

(
.z − 1

g
Du
Dt

)
, (27)

so that αn and αρ are the effective velocities of the drops. Note that here and below, the
derivatives are understood to be estimated at the scale l = lc.

It is of interest to consider the spatial variability of vR,ρ and vR,n and also how they are
related to each other. Figure 4 shows the scatter plots obtained from the HYDROP data by
using the high Re theoretical relaxation formula (equation (3)b). Table 1 shows the storm-by-
storm mean as well as the spread between scenes within the same storm, averaging over a
70 cm resolution, i.e. at about the relaxation scale lc. From the table, we can see that the mean
over each storm is fairly stable, whereas from figure 4 we see that the variability is very large.
Although there is clearly no one-to-one relation between vR,ρ and vR,n, the following relation is
roughly satisfied: vR,n = avb

R,ρ with a = 0.95 ± 0.07, b = 0.70 ± 0.10 (the standard deviations
being the storm-to-storm spread in values, for v in units of m s−1). This shows that vR,ρ and vR,n

cannot be taken to be equal. To get an idea of the spatial variability, we also calculated the mean
horizontal spectra of vR,ρ and vR,n (figure 5(a)). Although the range of scales is small, the figure
suggests that the spectrum is dominated by the low rather than high wavenumbers (of interest
below); possibly even with a roughly Corrsin–Obukhov spectrum at low wavenumbers. While
this result follows if ρ has a Corrsin–Obukhov spectrum (since the vRs are the powers of ρ;
see section 4.4, figure 8(c)), note that it is contrary to the usual meteorological assumption that
vR is horizontally homogeneous (being determined by a spatially homogeneous DSD).
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Figure 5. (a) Horizontal spectra of the number-weighted mean relaxation
velocities vR,n with highest wavenumber = 70 cm−1 showing a roughly k−5/3

(Kolmogorov) spectrum at low wavenumbers (see black reference line),
flattening out near the mean relaxation scale at the right. Yellow = 207, green =
295, blue = 229, purple = 142 and red = 145. (b) Same but for the density-
weighted mean relaxation velocities vR,ρ .

Figure 6. (a) Spectra of the vertical gradients of the number weighted mean
relaxation velocities ∂vR,n/∂z, showing their slowly increasing character up
to the mean relaxation scale (the maximum at the far right). Yellow = 207,
green = 295, blue = 229, purple = 142 and red = 145. (b) Same but for the
density weighted mean relaxation velocities ∂vR,n/∂z.

To investigate the variability in the vertical gradients, we determined the spectra of the
vertical gradients of vR,ρ and vR,n (using finite difference estimates of ∂vR,n/∂z and ∂vR,ρ/∂z),
these are needed in section 3.3 and are shown in figures 6(a) and (b). We see that in both
cases the spectrum shows a slight tendency to rise at higher wavenumbers; if the spectrum
is E(kz) ≈ k−β

z , then roughly β ≈ −0.3. Recall that whenever β < 1, that the variance is
dominated by the small scales/large wavenumbers (an ‘ultraviolet catastrophe’). Since the
spectrum of ∂vR/∂z is k2

z times the spectrum of vR, this is consistent with a near-Kolmogorov
value β ≈ 1.7 in the vertical gradients.
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3.3. The mass and number fluxes

To put the mass flux vector into a more useful form, we can appeal to the dynamical fluid
equations:

ρa
Du
Dt

− g = −∇ p + η∇2u + F r, ∇ · u = 0, (28)

where we have used the incompressible continuity equation for u adequate for our purposes, see
Pruppacher and Klett (1997) and F r is the reaction force of the rain on the wind and p is the
pressure. The reaction force per volume of the rain on the air is:

F r = ρ

(
g − dv

dt

)
≈ ρ

(
g − Du

Dt

)
+ ρ

vR,ρ

g
D2u
Dt2

(29)

plus higher order corrections. We therefore obtain:

g − Du
Dt

= 1
ρ + ρa

(
∇ p − η∇2u − ρ

vR,ρ

g
D2u
Dt2

)
. (30)

We can now note that the critical decoupling scale lc is typically much greater than the
turbulence dissipation scale so that at the scale lc, we can neglect the viscous term. In addition,
since we consider scales l > lc and Stl < 1, we neglect the D2u

Dt2 term. We therefore obtain the
approximation:

g − Du
Dt

≈ 1
ρ + ρa

∇ p (31)

and hence using this in equations (26) and (27), we obtain:

αn ≈ u +
vR,n

g (ρ + ρa)
∇ p, (32)

αρ ≈ u +
vR,ρ

g (ρ + ρa)
∇ p. (33)

Finally, if we make the hydrostatic approximation (∇ p = g(ρ + ρa)ẑ), we see that this reduces
to a simpler form:

αn ≈ u + vR,n
.z, (34)

αρ ≈ u + vR,ρ
.z, (35)

i.e. the effective velocities are equal to the wind velocities plus the appropriate mean
relaxation speeds. To judge the accuracy of the hydrostatic approximation, we can consider the
dimensionless difference 1 − 1

gρa

∂p
∂z , which in nonprecipitating air at scales above the viscous

scale, should be equal to the dimensionless vertical acceleration: ≈ 1
g

Dw
Dt . Although we did not

have measurements during HYDROP, this difference has been evaluated empirically using state-
of-the-art drop sondes with roughly 5–10 m resolution in the vertical during the ‘NOAA Winter
Storms 04’ experiment (North Pacific Ocean). It was found that the typical mean value at the
surface was about 0.02 with fluctuations of the order ±0.005 so that, even at 10 m scales, we may
use the hydrostatic approximation to reasonable accuracy. In addition, at higher wavenumbers,
the vertical spectrum of 1 − 1

gρa

∂p
∂z ≈ 1

g
Dw
Dt (figure 7) increases nearly linearly with wavenumber

showing its strong dependence on the small scales. This suggests that the (notoriously difficult
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Figure 7. This shows the quadratically detrended vertical acceleration
compensated by multiplying by k−1, bottom 4 km, 10 m resolution. The flat
spectrum corresponding to scales smaller than about 400 m corresponds to
Ea(k) ≈ k+1 behaviour (i.e. the E(k) on the vertical axis = Ea(k)/k, where Ea

is the acceleration spectrum). The data are average spectra from 16 drop sondes
during the Pacific 2004 experiment over the North Pacific Ocean.

to measure) vertical velocity (the integral of the acceleration) has a spectrum k2 times smaller,
i.e. roughly k−1 (see also the discussion on the vertical velocity in Lovejoy et al (2008b), where
similar conclusions are reached).

Using the hydrostatic approximation (for αn and αρ , but not for their divergences, where
we only neglect the Du/Dt · ∇vR term), we therefore obtain the following equations for the
number and mass densities:

∂n
∂t

+
(
vR,n

.z + u
)

· ∇ρ = −n
∂vR,n

∂z
+

nvR,n

g

(
1
2
ω2 − s2

)
− ϕ

∞∫

0

〈N |h|N 〉dM, (36)

∂ρ

∂t
+

(
vR,ρ

.z + u
)

· ∇ρ = −ρ
∂vR,ρ

∂z
+

ρvR,ρ

g

(
1
2
ω2 − s2

)
, (37)

where we note the additional coalescence term in the equation for n.

3.4. The rain rate

In a similar manner, we can obtain the z-component of the mass flux r , which is the rain
rate R:

R = (r)z = ρ(w + vR,ρ), (38)

where for the vertical wind we have used the notation w = (u)z. Although the full ramifications
of this equation for rain will be developed elsewhere, it should be noted that this approximation
will break down in regions where the particle number density n (strongly correlated with ρ)
is so small that there is low probability of finding a drop (see the discussion of the necessary
compound cascade/Poisson model in sections 4.3 and 4.4 and equation (63)). In this way, zero-
rain rate regions simply correspond to regions with very small n.

New Journal of Physics 10 (2008) 075017 (http://www.njp.org/)

http://www.njp.org/


20

To understand how this may affect the rain statistics, consider the following simple model.
Since n and ρ are highly correlated, we may set ρ to zero whenever it is below some threshold
ρt. If for the moment we ignore the term vR,ρ the model would be:

R = ρtw; ρ > ρt,

R = 0; ρ < ρt. (39)

We now take ρ to have Corrsin–Obukhov statistics (%ρ ≈ l H with H = 1/3 corresponding to a
spectrum k−β ; ignoring intermittency corrections, β = 1 + 2H = 5/3 as found in the HYDROP
experiment), and w to have H ≈ 0 statistics (β ≈ 1; as inferred indirectly from the drop sonde
data, figure 7). We seek the spectrum of R. First consider the effect of the threshold. At large
scales it imposes a fractal support, which flattens the spectrum; at high wavenumbers it remains
smoother than w so that the product ρt,w will have high wavenumber statistics dominated by
the vertical wind ≈k−1, whereas at low wavenumbers, it will be much shallower (depending
somewhat on the threshold and the value of H). In addition, if we confine our rain analyses
to regions with no zeroes, then the break disappears and we expect roughly k−1 statistics.
If we now consider the (neglected) ρvR,ρ in equation (38), we see that it will have much
smoother, nearly Corrsin–Obukhov (β ≈ 5/3) statistics; its contribution to the spectrum will
thus be dominated by the vertical wind term ρw. These conclusions have been substantiated by
numerical simulations and will be the subject of a future paper.

This simple model may well be sufficient to explain observations of rain from high-
(temporal) resolution raingauges: several studies have indeed found corresponding ω−0.5 spectra
at long times but ω−1 spectra at short times (see e.g. Fraedrich and Larnder 1993) with
transitions occurring at scales of 2–3 h (see de Montera et al 2007).

3.5. Energy flux, number and mass variance fluxes

In figure 1, we noted that at scales l > lc, ρ accurately obeyed the Corrsin–Obhukov law
for passive scalars: Eρ(k) ≈ k−5/3. The reason is that the variance flux χ = −(∂ρ2/∂t) is
‘conserved’ by the nonlinear terms and can therefore only be dissipated at small scales. To
see this, multiply equation (22) by −2ρ and use equation (27) to obtain:

χ = −∂ρ2

∂t
= 2ρ∇ · r = ∇ ·

(
ρ2αρ

)
+ ρ2∇ ·αρ. (40)

Integrating over a volume and using the divergence theorem, we see that only the ρ2∇ ·αρ

represents a dissipation of the variance flux. We therefore obtain:

χdiss ≈ ρ2∇ ·αρ ≈ ρ2
(

∂vR,ρ

∂z
+

vR,ρ

g

(
ω2/2 − s2)

)
, (41)

(with the hydrostatic approximation). These terms are only important at small scales. This is
true of the vorticity/shear term since Eω(k) = Es(k) = k2 Eu(k) (the standard result in isotropic
turbulence, which is a consequence of the fact that ω and s are the derivatives of velocity).
In Kolmogorov turbulence, therefore both ω2 and s2 have roughly k1/3 spectrum; figure 5(a)
shows that vR,ρ varies more smoothly so that the far right term in equation (41) is dominated
by high wavenumbers. Furthermore, we have seen from figure 6 that the spectrum of ∂vR/∂z
is also dominated by the small scales and also has a near k1/3 spectrum. If we estimate
ω2/2 − s2 ≈ (%ul/ l)2 ≈ ε

2/3
l l−4/3, then from table 1 we see that at lc, ∂vR/∂z can be neglected

with respect to (vR,ρ/g)(ω2/2 − s2). Since the dissipation depends only on tR = vR/g and
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on εl , using dimensional analysis we obtain lρ,diss = ε
1/2
l t3/2

R = lc (cf equation (12); alternatively,
we obtain the same result by estimating ρ in equation (41) from %ρ in the scaling regime
discussed later, equation (55). Since the above arguments are only valid for l > lc, this at least
demonstrates the self-consistency of the model.

Similarly, for the dissipative part of the number variance flux (from equation (21)):

ψdiss = −∂n2

∂t
= n2∇ ·αn + 2nϕ

∫ ∞

0
〈N |h|N 〉dM, (42)

so that we have:

ψdiss ≈ n2
(

∂vR,n

∂z
+

vR,n

g

(
ω2/2 − s2)

)
+ 2nϕ

∞∫

0

〈N |h|N 〉dM, (43)

(again using the hydrostatic approximation). The dissipation of number density flux thus has a
first term of the same form as the mass density flux, but an additional coalescence term, which
does not depend on spatial gradients. We therefore expect it to contribute to the dissipation of ψ
over a wide range of scales with intensity strongly dependent on the local drop concentration.
Indeed, since n is related to ρ via the DSD, it will be the scale lρ,diss = lc which will be the inner
scale for the n field, roughly as observed (cf figures 3 and 8). However, n does directly define
an important scale: the local inter-drop distance linter = n−1/3, where the field description breaks
down; this is discussed below.

3.6. Coalescence

From the empirical spectrum and supported by the theoretical considerations of section 2, we
have developed a picture of rain being composed of lc-sized statistically homogeneous (white
noise) ‘patches’. While each patch has a highly variable liquid water content (determined by the
turbulent dynamics), within each patch (corresponding to scales with Stl >1), the variation is
white noise suggesting that within a patch the particles are statistically independent. If the mean
inter-drop distance linter is smaller than lc, so that each patch contains many drops, then the key
coalescence processes are greatly simplified. In this section, we examine the consequences.

We now consider the coalescence term in more detail:

〈N |H(M, M′, x, t)|N 〉 = ϕ(x, t)〈N |h(M, M′)|N 〉, (44)

where we have factored the general kernel H(M, M′, x, t) into a purely mass-dependent h(M, M′)
and a time–space varying speed term ϕ. The h(M, M′) kernel describes the basic collision
mechanism, whereas the ϕ determines the coalescence speed. Fairly generally, we may write:

H(M, M′, x, t) = E(M, M′)(L + L ′)2%v(M, M′, x, t), (45)

where %v is the difference in velocities of the colliding drops and E takes into account the
geometry and collision efficiency (typically taken as a power law of the mass ratios, see e.g.
Beard and Ochs (1995)), for much recent work on these factors in cloud drops, especially the
impact of turbulence, see Franklin et al (2005, 2007), Pinsky et al (1999, 2001, 2006,) Wang
et al (2005a, b, 2006). Following the empirical spectrum, which indicates a rapid transition
from drops following the flow at scales larger than lc to drops with apparently white noise
statistics at smaller scales, it is natural to consider the simplified model that the particles
follow the flow (but with an extra sedimentation velocity vR) down to lc (roughly independent
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(a) (b)

(c)

Figure 8. (a) Same as previous but for n, the particle number density (calculated
using an indicator function on a 1283 grid. The reference lines have slopes −2
and +2, the theoretical values for the l1/2 law and white noise, respectively.
(b) This shows the ratio of the ensemble spectra Eρ(k)/En(k); for each of
the 5 storms, and the overall ensemble (purple), with the theoretical reference
line slope −1/3. This is a sensitive test of the prediction of equations (55)
and (59). (c) These are mean β values for the different ηs with the bars
indicating storm-to-storm differences. The fits were for wavenumbers <70 cm−1

(the turbulent regime; l > lc, Stl < 1). Note that for η = 0 (number density)
and η = 1 (mass density), the theoretical predictions (2 and 5/3; ignoring
intermittency corrections) are well verified since β = 2.02 ± 0.11 and 1.74 ±
0.12, respectively. See figure 3 for the corresponding spectral minima.

of particle mass) and then that they are independent of the flow at smaller scales. Using
this approximation, when two particles collide, we may thus assume that since the moment
that they decouple from the flow a distance lc away they have followed roughly linear
trajectories and according to equation (13) their typical velocity difference upon collision
will be:

%vlc ≈ tR%alc, (46)

where tR is the mean relaxation time. Note that as discussed in the derivation of equation (13),
we have neglected the gradient of the relaxation velocities which (empirically, table 1) are
somewhat smaller than the turbulent velocity gradients. Using the turbulent inertial range
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Figure 9. This shows the nondimensional cumulative DSD, i.e. the probability
distribution Prl(M/Ml > s), for each of the 5 storms (yellow = 207, green =
295, blue = 226, purple = 142 and red = 145). s is a nondimensional threshold.
The black reference line has slope −5.

estimate of the acceleration (%al = %vl/τe,l) and tR = (lRg)1/2, we obtain:

%vlc ≈
(

lR

g

)1/4

ε
1/2
lc

, (47)

a very weak dependence on lR, which gives some ex post facto justification to the lumping of all
the drops together (independent of their diameters) and using mean values.

Using this velocity difference in the interaction kernel (equation (45)), we obtain:

ϕ
(
x, t

)
〈N |h|N 〉 =

(
lR

g

)1/4

ε
1/2
lc

〈N | π
(

3
4π

)1/3

E
(
M, M′) ρ−2/3

w

(
M1/3 + M′1/3)2 |N 〉 , (48)

or:

h (M, M′) =
(

3π2

4

)1/3

E (M, M′) ρ−2/3
w

(
M1/3 + M′1/3

)2
,

ϕ
(
x, t

)
= ε

(
x, t

)1/2
lc

l1/4
R g−1/4,

(49)

i.e. the coalescence speed ϕ is equal to the turbulent velocity gradient at the mean relaxation
scale (the subscript on the integral denotes spatial averaging at the relaxation scale), the
dimensions of h are (length)2.

Although ε(x, t) and, hence, the coalescence speed ϕ(x, t) is highly variable, it defines
characteristic speeds for the coalescence process: ε

1/2
lc

l1/4
R g−1/4. We note that this approximation

implies that the inter-drop collision rate is determined primarily by the turbulence and not
directly by the mass-dependent relaxation velocities (as is usually assumed). As a final
comment, we could consider the possibility of applying this to cloud drop dynamics. Clearly,
we would have to include terms representing condensation, however, as far as the coalescence
processes are concerned, a key question is whether for cloud drops linter < lc, the condition,
which allows us to exploit the ‘white noise’ regime (corresponding to scales with Stl >1).
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Using the standard data on relaxation speeds (Pruppacher and Klett 1997), and taking ε =
4 m−2 s−3 (the mean estimated here), we find from equation (12) that for 1 µm drops, lc ≈
2 × 10−7 m, for 10 µm drops lc ≈ 0.2 mm, for 200 µm drops (the smallest detectable in the
HYDROP experiment), it is already lc ≈ 8 mm while for 1 mm drops lc ≈ 60 cm. Assuming a
cloud drop density of the order 100 cm−3 (not uncommon for 1–100 µm-sized drop densities in
clouds), we obtain linter ≈ 2 mm, which implies that for the condition lc < linter to hold, the drops
must be >100–200 µm, i.e. they must be large enough to be considered as rain drops.

4. The scaling laws

4.1. The Corrsin–Obukhov law

We have seen in the previous section that except at small dissipation scales, the mass-density
variance flux (χ), number-density variance flux (ψ) and energy flux (ε) are conserved:

ε = −∂u2

∂t
; χ = −∂ρ2

∂t
; ψ = −∂n2

∂t
. (50)

These scale-by-scale flux conservations lead to constraints on the microphysics. To understand
the consequences, let us recall the standard derivation of the Kolmogorov and Corrsin–Obukhov
laws. These are obtained by assuming that there is a quasiconstant injection of the passive-scalar
variance flux χ and energy flux ε from large scales and that this is thus transferred without
significant loss to the small scales, where it is dissipated. Between an outer injection scale
and the dissipation scale there is no characteristic scale, hence at any intermediate scale l one
expects:

εl ≈ %u2
l

τe,l
; χl ≈ %ρ2

l

τe,l
, (51)

where %ul is the typical shear across an l-sized eddy, and %ρl is the corresponding typical
gradient of passive scalar; the τe,l are the corresponding transfer times (the ‘eddy turnover time’).
For both ε and χ the timescale is determined by the turbulent velocity at the length scale l:

τe,l = l
%ul

. (52)

This is the timescale for %ρl as well as %ul (neither process is affected by coalescence). This
leads to:

εl ≈ %u3
l

l
; χl ≈ %ρ2

l %ul

l
. (53)

Solving for %ul and %ρl , we obtain the classical Kolmogorov and Corrsin–Obukhov laws:

%ul = ε
1/3
l l1/3, (54)

%ρl = χ
1/2
l ε

−1/6
l l1/3. (55)

Finally, we might add that by invoking a third property of the equations—that they are ‘local’ in
Fourier space, i.e. the interactions are strongest between the neighbouring scales, we obtain the
standard cascade phenomenology, the basis of cascade models and multifractal intermittency.
The velocity equation is expected to hold down to the viscous dissipation scale, whereas we have
argued (section 3.5) that the equation for %ρl breaks down at the dissipation scale lρ,diss ≈ lc.
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4.2. The new number-density scaling law

We have noted (section 3.6) a key difference between the mass density and the number density
equations: due to the conservation of mass in coalescence processes, the mass-density equation
was independent of coalescence processes, in contrast, the number density was dependent on
the latter.

Whereas the speed of variance flux transfer for ε and χ is the strongly scale-dependent %ul ,
the corresponding speed for the number-density variance flux ψ is determined by the weakly
scale-dependent speed of the coalescence processes at the scale l > lc :

ϕl = g−1/4
(

l1/4
R ε

1/2
lc

)

l
≈ g−1/4l1/4

R ε
1/2
l ; (56)

the subscript on the bracketed term indicates spatial averaging at the scale l > lc. The
approximation (ε

1/2
lc

)l ≈ ε
1/2
l ignores small intermittency corrections. We also see that for the

coalescence-variance flux transfer ψ , we obtain:

ψl ≈ %n2
l

τl
; τl = l

ϕl
, (57)

where τl is the coalescence time at scale l. This shows that the ψ cascade is determined not
only by the strongly scale-dependent turbulent processes (ε1/2

l ), but also by the weakly scale-
dependent coalescence processes (l1/4

R ). We thus obtain:

ψl = %n2
l

τl
= %n2

l

l
ϕl . (58)

Hence, for the scaling of the fluctuations in number density at scale l:

%nl ≈ ψ
1/2
l ϕ

−1/2
l l1/2 ≈ g1/8l−1/8

R ψ
1/2
l ε

−1/4
l l1/2, (59)

where we have used ϕl ≈ g−1/4l1/4
R ε

1/2
l . This l1/2 law (equation (59)) is the key result of

this section, in Fourier space (ignoring multifractal intermittency corrections), this implies
En(k) ≈ k−2 whereas for ρ, we have the classical Corrsin–Obukhov result: Eρ(k) ≈ k−5/3.
Using ϕl ≈ g−1/4l1/4

R ε
1/2
l , we can empirically estimate (table 1) the coalescence rates. We see that

it is always in the range 1–1.8 m s−1, i.e. substantially higher than that of the typical fluctuation
in the relaxation speed over lc, which is several times smaller.

Before concluding this section, it is worth discussing the possibility that the l1/2 law also
applies to number densities of cloud drops. We have already mentioned that for small Stη

systems—cloud, liquid water and aerosol concentrations—there is empirical evidence for the
validity of the (Corrsin–Obukhov) l1/3 law for concentration fluctuations. Indeed—aside from
the role of condensation processes—the main difference between rain and cloud dynamics
will be in the coalescence microphysics, which does not directly affect the concentrations
(equation (37)). However, the key role of the microphysics in deriving the l1/2 law is its
determination of a microphysically based quantity with dimensions of velocity (the coalescence
rate ϕ in equation (57) with weak scale dependence). In cloud dynamics, it is plausible that the
typical fluctuation in the relaxation speed %vR,l,drop at scale l (i.e. the mean absolute difference in
relaxation speed between all drop pairs in a region of size l) determines the coalescence rate (this
is close to what is often assumed in cloud drop modelling; it is the differential sedimentation
speed). Table 1 shows the empirical estimates of %vR,l,drop for scales l corresponding to the
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HYDROP experiment; we see that the values are little smaller than the turbulence-based
speeds ϕl . Using %vR,l,drop as an estimate of the coalescence speed, one obtains:

%nl =
(

ψl

%vR,l,drop

)1/2

l1/2, (60)

so that as long as the scale dependence of %vR,l,drop is weak, we again have an l1/2 law. It would
be interesting to attempt to empirically check this l1/2 law in clouds using aircraft drop data
(for example, using the FSSP probe). Since table 1 shows that at lc, ϕl = g−1/4l1/4

R ε
1/2
l is about

double the value of %vR,l,drop, we see that in the HYDROP experiment this sedimentation-based
coalescence speed will be slower than the estimated turbulence-induced speed.

If we put the two models together—one for the dominant coalescence process in rain, and
the other for the dominant process in clouds, we obtain the following picture for the production
of rain from clouds. At first, the particles are small and numerous enough so that linter < lc

(see discussion in section 3.6) and the coalescence rate is primarily the gravity-dominated
sedimentation mechanism. However, as the drops grow in size, linter can increase more rapidly
than lc. In regions where linter > lc it is the enhanced turbulence-based coalescence speed which
is dominant and this leads to the accelerated production of larger (rain-sized) drops.

It is worth briefly considering the effect of drop break up, which will be important for the
larger drops and that we have ignored until now. Since breakup conserves the mass, it will not
affect the equations for ρ. However, we must add another term to equation (15), which will be a
linear (rather than quadratic) integral operator to account for breakup, this will add a new term
to the equation for the number density (equation (21)) and a new contribution to the number
variance flux dissipation (equation (43)); it will modify the effect of the microphysics on the
flux dissipation (ψdiss) but without changing its fundamental character. We will therefore still
expect the number variance flux to exhibit a cascade from the large to small scales. However,
breakup might make a significant modification to the timescale for the transfer τl (equation (58)),
which is currently estimated by the coalescence speed. At the moment, the coalescence speed is
assumed to depend on the turbulence velocity differences across structures of size lc. Breakup
mechanisms would presumably not be too sensitive to the turbulence intensity; they might add
a contribution to the coalescence speed, which is independent of the turbulence. However, as
long as the result has only weak scale (l) dependence, this could modify the detailed prediction
equation (59) but not the basic l1/2 law. Once again the key to the l1/2 law is the existence of a
(roughly) scale-independent number-variance flux transfer speed.

4.3. Coupled χ and ψ cascades and the l1/2 law

If we eliminate the energy flux, we can express the mass density fluctuations %ρ in terms of the
number density fluctuations %n via the simple relation:

%ρl =
(

χ
1/2
l

ψ
1/3
l

)

g−1/12l1/6
R (%nl)

2/3 , (61)

which has no explicit dependence on the energy flux ε or scale l. Although there is a weak scale
dependence on the (intermittently varying) flux ratio χ

1/2
l /ψ

1/3
l and a weak DSD dependence of

the mean relaxation length lR, equation (61) implies that the mass and number fluctuations are
closely related.
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Equation (61) raises the question of the statistical couplings between ε, χ and ψ cascades.
While the links between ε and χ , and between ε and ψ are not obvious, χ and ψ are indirectly
linked through the number size density N , so that they cannot be statistically independent of
each other. Indeed, the ratio χ/ψ has dimensions of mass2 and it seems clear that at least at
large enough scales the two should be related by the (ensemble, i.e. climatological) drop mass
variance 〈M2〉Lext :

χLext ≈ ψLext

〈
M2〉

Lext
, (62)

where Lext is the external scale of the cascades; 〈M2〉Lext indicates the mass variance averaged
over the drop distribution at the largest scale Lext. A ‘strongly coupled’ model would take
χl ≈ ψl〈M2〉l , i.e. it would assume this relation to hold at all scales l, but this is likely to be
too strong an assumption to be realistic. In section 4.5, we discuss the constraints imposed by
0th- and 1st-order moments n and ρ.

In order to exploit these statistical relations so as to make stochastic processes with the
corresponding statistics, we may use the standard multifractal simulation techniques to simulate
ε, χ and ψ and from them (by fractional integration to obtain the extra l1/3, l1/2 scalings), the
u, ρ and n fields. However, the n field determines the probability per unit volume of finding
a drop; in other words, it should control a compound Poisson-multifractal process. In a future
paper, we show how to make such processes which produce stochastic realizations respecting all
the above statistics, and which determine implicitly the DSDs (see also Lovejoy and Schertzer
(2006) for an early proposal). For the moment, we note that the particulate nature of rain in fact
imposes a length scale equal to the mean interdrop distance:

linter = n−1/3, (63)

(n is the actual number density, not its fluctuation %n). Therefore, wherever linter > lc, lc must
be replaced by linter. This will occur at low rain rates and will modify the low rain rate statistics.
This behaviour, in fact, provides a natural ‘cutoff’ mechanism for the transition from rain to no
rain; as the rain rate becomes lower and lower, the inner scale of the cascade rapidly becomes
larger and larger. We can study this using the compound cascade Poisson processes.

4.4. The empirical number density law

In order to empirically test the l1/2 law for the number density, we used the same grid as for the
mass density but with η = 0 (equation (4)), producing the spectra shown in figure 8(a).

We see that the convergence to the low wavenumber theoretical k−2 behaviour (straight
line) occurs at slightly smaller scales than for the k−5/3 behaviour of ρ since n is less variable
(smoother) than ρ (see figure 3). In figure 8(b), we show the ratio of the ensemble spectra (all
19 triplets) for Eρ(k), En(k); this shows that the number density field really is smoother (by
about k1/3) than the corresponding spectrum for the mass density. Because we have taken the
ratio of the spectra, the y-axis is ‘blown up’ with respect to the previous; this is quite a sensitive
indicator that the basic theory is roughly correct. Finally, in figure 8(c), we show the exponents
of spectra of ρη; η = 0, 1 are the number and mass density spectra, whereas η = 1/6 and 7/6
are important for vR,n and vR,ρ , respectively, and η = 2 for the radar reflectivity factor.
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4.5. The implications for the DSD

The model that has emerged combines three large-scale turbulence based fluxes—the energy,
liquid water and number variance fluxes which are determined by the large-scale state of the
atmosphere; the drop microphysics primarily determines the inner scales of ρ and n. Together,
these three fluxes determine the highly intermittent u, n and ρ fields. Since n and ρ are
respectively the 0th and 1st moments of the mass number density N (M), we see that the
large scales constrain the microphysics via these two moments. In order to succinctly express
the constraint, we can appeal to work done in the last few years exploring different ways of
applying dimensional analysis to the analysis of DSDs (Lee et al 2004, Sempere-Torre et al
2000, Uijlenhoft et al 1999). The basic conclusion of these papers is that on purely empirical
grounds a single-dimensional quantity is not enough to account for the diversity of DSDs so
that at least two such quantities are needed. In Lee et al (2004) the use of two different moments
to nondimensionalize the distribution is explored empirically. It is surprising that the authors
never consider the mass moments order j = 0 and 1, instead they concentrate their attention
on combinations of the moments of orders j/3 and j/2 or j/3 and ( j + 1)/3, where j is an
integer " 1.

In any case, nondimensionalization using the scale l fields nl , ρl is straightforward—it
can be done by inspection. First, the mass can be nondimensionalized by ρl/nl = Ml , which
is the mean drop mass at scale l, and the cumulative drop number distribution Nl(M/Ml > s)
of the nondimensional mass M/Ml (i.e. the number density of drops with mass ratio M/Ml

exceeding the threshold s) can be nondimensionalized by nl which yields Prl(M/Ml > s), i.e.
the cumulative probability distribution (accumulated from s to infinity rather than the more
usual 0 to s). Combining both nondimensionalizations, the large-scale determination of nl , ρl

therefore implies that the nondimensional Prl(M/Ml > s) = pl(s) should be independent of n
and ρ, so that pl(s) should be a universal (microphysics determined) probability distribution:
only a function of the scale l and nondimensional drop mass s. This implies that the drop size
density is Nl(M) = nl(dpl(Mn/ρ)/dM) = (n2

l /ρl)p′
l(s) with s = Mnl/ρl , the consequences of

which will be explored elsewhere.
In order to test this prediction, we present figure 9, which shows Prl(M/Ml > s) for the

5 storms with scales corresponding to the entire experimental volume (which was nearly the
same for all the storms). From the figure, we see that the curves are so close as to be nearly
indistinguishable; for Pr > 10−3, the standard deviation of the (log10) residue of each curve
compared to the overall mean is ±0.038 so that as predicted, there seems to be a universal
nondimensional DSD. We also see that the extremes are perhaps not far from this algebraic
form (itself a generic consequence of cascades).

5. Conclusions

Cloud and rain physics have been divorced from turbulence theory for too long. To date,
the attempts to unify them at the most fundamental level have been arduous, and have
proceeded from the small dissipation scales up, taking advantage of the general and elegant
low Stokes number relation between the particle and wind velocities (Maxey 1987). In contrast,
phenomenological turbulence cascades—which model the fluxes from large scales down to the
dissipation scales—provide an attractive alternative. This is because they have proved to be
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not only highly accurate but even indispensable for understanding and modelling both rain and
turbulence; they thus provide the natural framework for explicitly marrying the two.

In order to make progress, we relied on a new and unique source of data spanning the
drop/turbulence scales: the HYDROP experiment. The latter provides the positions and masses
of rain drops in a roughly 10 m3 volume; the empirical HYDROP mass spectra show quite
directly that rain drop (mass and number) densities are organized into statistically homogeneous
(white noise) ‘patches’ whose overall liquid water content varies according to the classical
turbulence (Corrsin–Obukhov) laws, while within each patch the distribution is homogeneous
(the spectrum is white noise). In contrast, the classical theory of precipitation still used in
interpreting radar echoes assumes that lc is the size of a radar pulse volume, which is typically
1 km or more.

Although rain drops have high Stokes numbers so that Maxey’s relations are not valid,
we argued that the patches were precisely of critical size lc where Stlc = 1, so that it was
plausible that Maxey’s relations might hold for drop velocities coarse-grained over the drops
within the homogeneous patches size lc (since for scales l > lc Stl < 1). By assuming Stlc = 1,
we were able to empirically estimate the dissipation scales, the Stokes and the sedimentation
numbers and the energy fluxes. By applying the coarse-grained Maxey relations, we formulated
dynamical equations for both liquid water mass and particle number densities (ρ and n). With
the exception of a mean vertical (sedimentation) velocity, the liquid water mass equation was
identical to that of standard passive scalar advection and therefore predicted that rain should
follow the Corrsin–Obukhov (l1/3 and k−5/3 laws) of passive scalar advection. This was because
both the microphysical processes and the sedimentation process conserve overall mass density.
However, the equation for the particle number density was quite new: of the form l1/2 (i.e.
k−2spectrum) the difference arising from the fact that while coalescence processes conserve
total mass, they do not conserve total particle numbers. Although any microphysical process
that defines a nearly scale-invariant coalescence speed ϕ leads to an l1/2 number density law,
we argued that for rain, the speed was proportional to ε

1/2
l , whereas for cloud drops the speed

would depend rather on the differences in drop relaxation speeds. While the latter mechanism
is presumably also present in rain, it could be dominated by the former energy flux-determined
rate, whenever the patch size contained many particles (i.e. lc & linter). Either mechanism allows
the (weakly scale-dependent) coalescence speed to determine the rate of scale-by-scale transfer
of number variance flux, whereas the speed of the corresponding mass-density variance flux
depends on the strongly scale-dependent turbulence velocity. In both cases, the HYDROP data
were used to verify that both the l1/3 and l1/2 laws were obeyed with reasonable accuracy.
The weakest part of the argument was the use of Maxey’s equations on the coarse-grained
drop velocities. However, we only used certain symmetries of the resulting equations (notably
the scale invariance and conservation of the variance fluxes by the nonlinear terms) and the
conservation of mass by the coalescence processes, so that our conclusions about the l1/3 and
l1/2 laws are likely to be robust.

Although in this paper, we only touch on it, an important consequence concerns the rain
rate field R, which is the vertical component of the liquid water mass flux vector. Within the
hydrostatic approximation (which is of acceptable accuracy in this context), we showed that R is
the product of the mass density and the sum of the vertical velocity and mean relaxation speed.
However, when the number density (n) field (which is correlated with the ρ field) is sufficiently
close to zero, it will imply zero-rain rates since the probability of finding a drop becomes very
low (a full study of this effect must be done using compound Poisson multifractal processes
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discussed below). In this way, a natural rain/no-rain mechanism emerges and we argue that it
can quantitatively explain observations of rain rate spectra.

The conventional methods of modelling the evolution of raindrops (e.g. Khain and Pinsky
1995, Khairoutdinav and Kogan 1999, Srivastava and Passarelli 1980) give turbulence at most a
minor (highly ‘parameterized’) role: the atmosphere is considered homogeneous and the spatial
variability of the DSD arises primarily due to complex drop interactions. Our approach is in
many ways the opposite: down to a small drop inertial scale (below which a kind of white
noise ‘drop chaos’ exists), the drops are shown to be strongly coupled with the highly variable
(multifractal) wind field. The coalescence speed is then determined by the turbulence velocity
gradient at this decoupling scale. By considering the 0th and 1st moments of the DSDs (n and ρ),
and showing how they are related to scale-by-scale conserved turbulent fluxes, we obtain strong
(but implicit) constraints on the DSD, which we expect to be highly variable simply because
it is controlled by turbulent cascades. Since these 0th- and 1st-order moments constrain the
microphysics, we expect—on dimensional grounds (and there is literature on this type of DSD
argument, e.g. Lee et al (2004)) that the dimensionless cumulative DSD as a function of the
dimensionless drop mass should be a universal function of dimensionless mass. We empirically
verified this on the HYDROP data.

The implications of this model can be taken further: if we are given a turbulent number
density field, it can be used to control a compound Poisson process, which determines the
locations of the drops. Once the positions are determined, the corresponding ρ field can then be
used to attribute masses to the particles. In this way, we obtain a 3D model of particle positions
and masses, which implicitly determines the highly variable DSD in the vicinity of each point
and which respects the turbulence laws and is compatible with the microphysics (see Lovejoy
and Schertzer (2006) for a preliminary model). Such models can be used to solve longstanding
observers problems in the radar meteorology, satellite rain algorithms, rain-amount estimation
and cloud physics.
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