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Abstract. By direct statistical analysis we show that over Richardson suspected that — if viewed correctly — the seem-
almost all their range of scales and to within typically bet- ing complexity of the brute force numerics might hide scale
ter thant1%, atmospheric fields obtained from analyses andby scale simplicity.

numerical integrations of atmospheric models have the mul- In the case of cascades, he was about 40 years ahead of his
tifractal structure predicted by multiplicative cascade mod-time: it was not until the 1960’s, that explicit multiplicative
els. We quantify this for the horizontal wind, tempera- cascade models were first developed (Novikov and Stewart,
ture, and humidity fields at 5 different pressure levels for 1964; Yaglom, 1966; Mandelbrot, 1974). These models are
the ERA40 reanalysis, the Canadian Meteorological Centrédbased on the scale symmetry (broken only by viscosity at
Global Environmental Multiscale (CMC, GEM) model, as small scales and the forcing at large scales), by scale conser-
well as the National Oceanographic and Atmospheric Ad-vation of energy flux and the Fourier localness of the non-
ministration Global Forecasting System (NOAA, GFS). We linear interactions (so that structures of a given scale mostly
investigate the additional prediction that the cascade belonggteract with other structures of similar scale). These mul-
to a universal multifractal basin of attraction. By demonstrat-tiplicative cascades can be understood as attempts to deduce
ing a “Levy collapse” of the statistical moments to withi2 the implications of some (but not all) of the symmetries of the

to £5% over most of the range of scales, we conclude thagoverning equations. Since the mid 1980’s it was realized
there is good evidence for this. Finally, we discuss how thisthat multiplicative cascade processes are very general; they
stochastic multiplicative cascade structure can be exploitedre the generic multifractal process. Today, their nontrivial
in improving ensemble forecasts. statistical properties are relatively well understood and they
have been applied throughout physics and the geosciences.

1.2 Cascades in geophysical turbulence
1 Introduction

While cascades have regularly been invoked in laboratory,
1.1 Numerical weather prediction and cascades geophysical, and astrophysical turbulence, the appropriate

turbulent cascade flux (e.g. energy, enstrophy etc.) is typi-
Richardson’s seminal book “Weather prediction by numeri- cally determined a priori by theoretical considerations. Sub-
cal process” (1922) is venerated as the pioneering work irsequent quantitative cascade tests are usually limited to the
numerical atmospheric modelling. With a lapse of aboutcomparison of numerically or empirically determined spec-
30 years, Richardson’s idea was taken up by generations dfal exponents with those expected (on essentially dimen-
atmospheric scientists; the result is modern ensemble foresional grounds) for the given (supposedly dominant) turbu-
casting systems. However in the same book, and in a subsdent fluxes. The most important classical spectral exponents
guent papers (especially Richardson, 1926), the seed of arare —5/3, —3 for the velocity exponents in regimes domi-
other idea was sown: that atmospheric dynamics might renated by energy and enstrophy fluxes respectively. For exam-
peat scale by scale in a cascade-like manner. In other wordgle, in analyzing atmospheric models, Steinberg et al. (1971),
Boer and Shepherd (1983), and Straus and Ditlevsen (1999)
calculated spectra and spectral transfers of energy, enstrophy

Correspondence tal. Stolle and pseudo-potential enstrophy. The latter paper is particu-
BY (stollej@physics.mcgill.ca) larly pertinent to our discussion since the large atmospheric
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“reanalyses” that it uses are earlier and slightly lower resolu-as they invariably do in the troposphere for air traffic control
tion versions of some of the data analysed here. The authongasons — can yield exponents spuriously close to the vertical
came to some strong conclusions: that there was no evidendgather than horizontal) values; they yield spectra exponents
for k=52 or k=3 behaviours nor for any upscale transient en- of ~—2.4 (rather thams—5/3) at large scales (Lovejoy et al.,
ergy transfer (the usual signature of 2-D turbulence). 2009c). It is interesting to note that the models discussed
Whereas the great majority of turbulence theories arehere are all hydrostatic so that the “horizontal” levels we an-
isotropic — or at least quasi isotropic (they have the same exalyze are actually isobars rather than isoheights. The fact that
ponents but not necessarily the same prefactors in all directhe wind spectra along isobars and isoheights are quite differ-
tions) — empirical studies of the vertical atmospheric struc-ent —2* rather thark—>/3) is important and helps explain
ture, e.g., Van Zandt (1982), Schertzer and Lovejoy (1985)the model statistics — which for the wind is also closgt6*
Dewan and Good (1986), Gardner (1994), Dewan (1997)0n isobars; this will be discussed elsewhere.
Lilley et al. (2004), Lilley et al. (2008), show on the con- Ifthe velocity field has a scaling cascade structure, then we
trary that the turbulence is anisotropic, with vertical expo- expect that there is also a temporal cascade structure so that
nents different from those in the horizontal so that the strat-the cascades are actually in space-time. We confirm this in a
ification is scaling. They therefore require anisotropic theo-forthcoming publication, where we discuss the relationship
ries such as the quasi-linear gravity wave theories — e.g. thbetween the spatial and temporal structures (Stolle, 2009;
Saturated Cascade Theory (Dewan and Good, 1986; Dewargtolle et al., 2009). Lovejoy and Schertzer (2009) gives a
1997) or the Diffusive Filtering Theory; (Gardner, 1994) — recent review of some of this work showing the ubiquity of
or the strongly nonlinear 23/9D buoyancy flux/energy flux space-time cascade structures and arguing that it allows for
model (Schertzer and Lovejoy, 1985). a new synthesis of nonlinear dynamics with state of the art
Recent analyses of massive quantities of global scale satehtmospheric data. To summarize: it now seems that for the
lite data (visible, infra red, passive and active microwavemodels to be realistic, they must have cascade structures, too.
wavelengths) have provided new impetus for attempting to
test multiplicative cascades on atmospheric models. Thesé.3 Cascades in direct numerical simulations

studies show empirically that to withir+1%, the energy ] ) ) )
Before turning our attention to the analysis of atmospheric

containing short and long wave atmospheric radiances re- , ;
spect the predictions of multiplicative cascades from planeM0dels, we should also mention the related field of pure hy-
tary scales down to at least several kilometres (Lovejoy et al.drodynamic turbulence which is often considered more fun-
2001, 2009a) so that the relevant sources and sinks of fluxedamental than atmospheric turbulence, but where the same
are likely to be scaling. Similarly, Lovejoy et al. (2009¢, d) issues have arisen. They too can myolye structures span-
showed that the vertical structure of horizontal wind, pas-Ning huge ranges of scale and despite intense efforts over

sive scalars, temperature, pressure, humidity, potential terf0r€ than 50 years, analytic approaches have been largely
perature, etc. also have cascade structures dowrrtdm ineffective; given their successes elsewhere in fundamental
with outer scales in the range 1-30km (depending on thdPhysics, this is perhaps surprising. The limitations of statis-
field). The picture that emerges from this wide range andtical closure, renormalization, and other kindred analytical

anisotropic cascade structure is at odds with the standarffchniaues have lead to the development of two main alter-
model of atmospheric dynamics which involves a “dimen- natives: brute force numerics and phenomenological models,

sional transition” between isotropic 3-D and isotropic 2-D €SPecially cascades. _ , o
turbulence (the “meso-scale gap”). Indeed, a recent survey Although Direct Numerical Simulations (DNS; i.e. with-
(and criticism) of empirical studies over the last 30 yearsOUt subgrid “parameterizations”) of Navier Stokes (NS)
(Lilley et al., 2004, 2008; Lovejoy et al., 2008) shows that €duations have been made since Orszag and Patter-
the classical studies of Gage and Nastrom (1986) (the GASISON (1972), it was not until Vincent and Meneguzzi (1991)
experiment) and Cho and Lindborg (2001) (MOZAIC) must that computers were p.owerful.enough to allow for swgula-
be reconsidered, especially their conclusions about spectrd{onS large enough to display hints of the Kolmogorow/
breaks and the 2-D turbulence nature of the large scales. TheP€ctra, the traditional signature of the inertial range. The
key to this re-evaluation is partly the use of much higher qual-PNS inertial range is limited primarily because the dissi-
ity modern data (especially from lidar and drop sondes), putPation is usm_JaIIX modelled with a Laplacian operator that
also the demonstration that in anisotropic (but scaling) turbu-/S typically significant over a range a large factes50) in
lence that the nature of aircraft trajectories — whether on isoSc@le. Recent Earth Simulator integrations on a Aagel

machs, isobars, or isoheights), as well as the effect of theif™® NowW able to display roughly an intermediate (inertial)
vertical fluctuations must be more carefully taken into ac-'&Ng€ spanning a factor 6f100 in scale (Yokokawa et al.,

count. For example, vertical fluctuations of the aircraft may 2002; Kaneda, 2003), but require massive computational ef-
themselves lead to spurious scale breaks and spurious expfp-rts'

nents (the stratosphere; Lovejoy et al., 2004). Alternatively,

the exponents obtained from aircraft flying along isobars —
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1.4 Goals and structure modulate the larger scale field by independent identically dis-

tributed “multiplicative increment8g” so that aftem steps,

The aim of this paper is thus to test the predictions of multi-at a given location in the space, the field is given by
plicative cascades on the spatial structure of various numer-
ical models of the atmosphere. This paper is structured a¥"=
brecioions of the multipiate models and diferent meth. 04"} = ¢! we easly see thayf] — A% Since the
o ) " cascade is multiplicative, its logarithi),=loge,, the “gen-

ods of estimating fluxes. In Sect. 3 we describe the data sets . - P n g ff}, gen g
and present the basic results and in Sect. 4 we conclude. ~ erator” is additive:T',=I'o+ > AT (with AT';=log(8e;)).

1
It is therefore not surprising that — due to the additive central
limit theorem for the sums of identical independently dis-
tributed random variables — there exist specific (stable, at-
21 Basic statistics tractive) “universal” forms for the exponeki(q):

n
®o ‘]_[16@- while the overall scale range s=A". If

2 Multiplicative cascade models

C1
During the 1960's and early 1970's, intermittency was in- K (@) = @—1) " —q),
creasingly acknowledged as an important phenomenon, bu\}vhere 0<C1<d is the “codimension of the mean”, which

its effect was usually considered small, associated primar-h terizes th fthe set that aives the dominant
ily with small corrections to the spectral exponents. The Characterizes e sparseness of the setthat gives the dominan

main statistical models (such as those used in statistical CIO(_:o.ntributiion to Fhe first order statistical moment (the mgan),
sures) assumed “quasi-Gaussian statistics”. In order to ob 1S the dimension of the space over which the cascade is ob-
tain a Gaussian model with the classical Kolmogorov Iaw_served (Schertzer and Lovejoy, 1987). The expression “dom-

Av=s3Ax1/3 (for velocity fluctuationsAv over distances inant contribution” is an asymptotic result valid for large
Ax) — the real space equivalent of what is given in Fourierm this limit there is an exact one to one correspondence be-
space in Kolmogorov (1941) —, it is sufficient to take the en- tween singularities ) and statisticaI. moments (Parisi and
ergy fluxe as a Gaussian white noise process and ghé Fnsch, 198.5):1/:[(1(61) S0 that t.h'e singularity correspond-

a (fractional) integration of order 1/3 (i.e., a power law fil- ing to g=1 is K (1?_C1' _In add|t|qn, the same arguments
ter of order—1/3): the resulting is a “fractional Brownian show that the codimension (the difference of the dimension
motion” of spaced and the fractal dimension of this singularity) also

In order to take into account intermittency, it suffices to gguisecé% ;Z?ti?:éttl;ﬁcw}léndtixegszizecgﬁigeglzfﬁié_he

replace the Gaussianin the above model by the result of tioﬁ Itis also the Le |¥1dex of the erFl)erator If({he cascade
a multiplicative cascade; this is the Fractionally Integrated. ™ vy 9 '

Flux model (Schertzer and Lovejoy, 1987). In multiplicative IS unllgnono- frac”tal, thera:O, WTer_ean=2 cor_resporld_s
to the “lognormal” multifractal. A “universal multifractal” is

lar tructur re broken up into smaller - . . . . ) -
cascades, large structures a e_b Oken up INto sma'le .da_ugfgne basin of attraction for wide variety of different multiplica-
ter structures which multiplicatively modulate the flux; this . ) )
ive processes. Far<2, Eq. (1b) is only valid fog >0; the

process is repeated to smaller and smaller scales. Normal—eaSon is that is the exponential of an extremal Levy vari-
ized cascade processes generally lead to multifractal fields P : . y
with statistics: able and whew <2, the latter has diverging moments for all

g <0. This means that the probability densityedfias a loga-

(1b)

(gD;z) =AK@. y =L/1 (1a) rithmic singularity for smalk (except fore=2, the Gaussian
case).
where “<.>" indicates ensemble (statistical) averagipgs In our analyses, we will see that the universal form

the turbulent flux normalized such thatp, >=1, K(g) isa  (Eq. 1b) fits the empiricak (¢) quite well so that irrespective
convex function describing the scaling behaviour of 4fe of whether the numerical models are indeed universal multi-
moment,\ is the ratio of the (large) scale, where the cas- fractals, the parametet%;, o give very convenient parame-
cade starts, to the scale of observatigaee Monin and Ya- terizations for their forms. Indeed, we have already seen that
glom (1975) for an early discussion of cascades or Schertze€;=K"(1); we could similarly definex=K"(1)/K’(1). For
and Lovejoy (1987) for the “codimension multifractal for- universal multifractals (Eq. 1b) this local£1) characteriza-
malism” used throughout this paper). In comparison, thetion becomes global - i.e., is enough to describe the entire
guasi-Gaussian (nonintermittent) classical model is the (triv-curve. In this way, the parametef§ ando« still quantita-
ial) special cas& (¢)=0. tively characterize the statistics near the mean. In this paper,
The usual “discrete in scale” model reproducing Eq. (1) although we are primarily interested in establishing the ba-
is to consider a uniform (constant) large scale fjugx(=1) sic predictions of multiplicative cascades (Eqg. 1a), we also
which is iteratively divided into random substructures with substantiate Eq. (1b) to some degree in Sect. 3.4, where we
the scale being reduced by integer ratigsat each step demonstrate a theoretically predicted “Levy collapse” of the
(usuallyro=2). These smaller substructures multiplicatively moments.
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4 J. Stolle et al.: The stochastic multiplicative cascade structure

As we have seen from the brief history above, the hy-that the interpretation is a little different. To see this, con-
pothesis that high Reynolds number turbulence respects mukider the example of the energy flax recalling that at the
tiplicative cascades is physically based, so the paper aimdissipation scale:
to test the hypothesis on numerical simulations. While it 5
might be possible that non-multiplicative processes may ex£~vv - Vv @)
ist which satisfy Eq. (1a) (and perhaps even Eq. 1b); to ou

. wherev is the viscosityp the velocity (this is obtained from
knowledge no such alternative models have been proposed y? v (

the Navier-Stokes equation by takimg-9v2/d: and ignor-
ing the dynamic terms which are unimportant for dissipa-
tion). Standard manipulations (e.g. Landau and Lifshitz,

In order to test Eq. (1a), we must therefore use an approach963) give:

that does not require a priori assumptions about the physi- 3 3 2 2

cal nature of the relevant fluxes nor of their scale symmetries ., Z Z (% + 8&) ~v (ﬁ) (4)
(isotropic or otherwise). If atmospheric dynamics are con-  i=f 721 \9x;  9xi Ax

trolled by scale invariant turbulent cascades of various (scale ) o o ]

by scale) conserved fluxes then in a scaling regime, the so_that if Ax is in the dissipation range (e.g. the finest reso-
fluctuationsA £ (Ax) in an observable (e.g. wind, temper-  ution of the model) then:

ature or radiance) over a distantse are related to the turbu- e\ 12

lent fluxes by a relation of the form f(Ax)=¢Ax". This Av = (—) Ax (5)
relation is a generalization of the classical laws of turbulence. v

For example, the Kolmogorov (1941) law for velocity fluc-  The models considered here actually use hyper-viscosities,
tuations hag7=1/3 andp=¢", n=1/3 (¢ is the energy flux), which have the advantage of confining the dissipation to a
whereas the Corrsin-Obukhov law of passive scalar advecsmall range of scales (about a factor of 3). This means that
tion hasp=yx1/2¢=1/® wherey is the passive scalar variance their dissipation is due to a Laplacian raised to the pawer
flux (Corrsin, 1951 and Obukhov, 1949). Without knowing (typically # is either 2 or 3) (e.g. Haugen and Brandenburg,
n or H — nor even the physical nature of the flux —we can 2004; Hamilton and Ohfuchi, 2007), we have:

use this to estimate the normalized (nondimensional)gfux

at the smallest resolution of our data: e~y - V¥ (6)

2.2 Estimating the turbulent fluxes

o =@/ {p) = Af/{Af). 2) wherev* is the hyperviscous coefficient chosen so that the
field is indeed smooth whenx=I/=1 pixel. If Ax is in the

Note that if the fluxes are realizations of pure multiplica- (smooth) dissipation regime, this leads to the estimate:
tive cascades then the normalizeghower fluxesg"/ (e"),
are also pure multiplicative cascades, so thats/ () ppn (i)l/z At @)
is a normalized cascade quantity. The fluctuativfi (1), V¥
at small scales\x=I/ can be estimated in various ways; |n al| cases — irrespective @f— for the normalized flux)’
in 1-D a convenient method is to use absolute first differ-\ye therefore have:
ences: Af (I)=|f (x+1) — f (x)| or absolute second dif- 12
ferences:Af () =|(f x+D) +f (x=1)) /2—f (x)|. These r_ & ﬂ @)
“poor man’s wavelets” are usually adequate — when as is (al/Z) (Av)
typically the case 8H <1 or O<H <2 (first or second or- o )
der differences, respectively) — but alternatively other def-"& See that this is the same as Eq. (2), the only differ-
initions of fluctuations (other wavelets) could be used. In€Nce is that for the wind field, the dissipation exponent is
2-D, convenient definitions of fluctuations (used below) are_’7:1/2 rgther than the valug=1/3 Wh'Ch, ho[ds in the spal-
the (finite difference) Laplacian (estimated as the differenced egime. If we introducex’, () V)’h'Ch is the scaling
between the value at a grid point and the average of its neigh€<Ponent for the norn"_nahz?:j flux ¢'=e"/ (e"), (so that
bours: A fa=| £ (x, v)—(f X+, )+ f (=L, y)+ £ (x, y+1) Kl(q_):K(q)) then takingg moments of Fhe latter, we
+f(x,y —1))/4]), or the modulus of a finite difference es- °PtINKy(@)=K1(ng)—qK1(n), which for universal multi-

timate of the gradient vector. The resulting high resolution fractals (Eq. 1b) yield, (¢)=n"K1(¢) andC,=n"C, so

flux estimates can then be degraded (by averaging) to lowef’at comparing the dissipation estimage-{/2) and the scal-

resolutions. ing range estimate;E1/3), we have:
Since empirical data are nearly always sampled at scales 3\

much larger than the dissipation scales, the above scalin§1diss= <2) C1scaling

range based technique has wide applicability. In numerical

models however, where we have data down to the (modelfFor the wind we find@~1.8 (see Table 2) so that

dissipation range, we find that the approach still works butC1diss{Clscanng%l.Sl‘S:Z.O?.

)
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Since passive scalars can be used as simplified modelsascades and are hence particularly relevant here (interest-
for the temperature and humidity fields which we analyze,ingly, they yield comparable universal multifractal parame-
the extension of this discussion to passive scalars is alsters). Other relevant connections between the cascade pre-
relevant. It shows that the interpretation of the empiri- diction, Eq. (1a), and dynamical equations are the studies
cally/numerically estimated fluxes in terms of classical the-of temporal scaling (Syroka and Toumi, 2001; Blender and
oretical fluxes can be nontrivial. Denoting bythe density  Fraedrich, 2003; Fraedrich and Blender, 2003), and temporal
of the passive scalar, ang=3dp?/d: its variance flux, the multifractality of climate models (Royer et al., 2008). The
dissipation range formula analogous to Eq. (3} ispx VZp companion papers Stolle (2009) and Stolle et al. (2009) ex-
(k is the molecular diffusivity) leading tap= (x /x)Y? Ax tends the present analyses to the time domain and makes sys-
(with corresponding extensions to hyperviscous dissipationYematic space-time comparisons.
whereas the corresponding formula in the scaling range Our primary goal is to check the basic prediction of the
is Ap~yx 2616 AxY/3 (Corrsin-Obukhov) which has the multiplicative cascade models (Eq. 1b) directly on simula-
same dependency on but which also involves the energy tions of the atmosphere (both forecasts and reanalyses). This
flux; the combined effective flug~y/?s~1/6 measured by  choice was made both due to the ready availability of large
the scaling method thus involves two (presumably statisti-numbers of realizations and due to the scientific (weather,
cally dependent) cascade quantities. In summary, althougklimate) significance of the results. Furthermore, as men-
both dissipation and scaling ranges can be used to test faioned previously, we expected to have a significant range of
multiplicative cascades and to quantify their variability, the scales exhibiting cascade behaviour because hyper-viscosity
relation between the two is not necessarily trivial. restricts most the effects of dissipation to a narrow range of

A final practical consideration is that in the analyses, scales (see however Frisch et al. (2008) for possible “side
the outer scale is not known a priori, but is an empiri- effects” of using hyperviscosity).
cally estimated parameter. It is therefore convenient to de- Qver the scaling/inertial range, there are three main dif-
fine a reference scalkrer S0 thatA=Lei/L. If the cascade ferences between the cascade structure of 3-D DNS and of
starts at the “effective outer scal&er then the correspond-  atmospheric models. First, in the former there is a single
ing ratio is Aeff = Lref/Lef and the normalized moments (energy flux) cascade, while in the latter we expect there
M,=(¢!)/ (p1)? are expected to obey the generic multiscal- to be several coupled cascades. The second is that due to

ing relation: gravity, the atmosphere is stratified so that the cascades are
L \K@ anisotropic (Schertzer and Lovejoy, 1987); indeed as men-
M, = (refr) ; A= Lref/L; heff = Lref/ Left (10)  tioned earlier — due to the 10km scale height of the mean

pressure field, isotropic models require at least two cascade
OIregimes for each flux. The third is that in DNS applications
to fully developed turbulence the forcing is deliberately con-
fined to the largest scales and the dissipation to the smallest
§cale. The cascade thus occurs in a source and sink free “in-
ertial range”. In comparison, the atmospheric boundary con-
ditions are quite different. In particular both the topography
(Gagnon et al., 2006) and the critical energy-containing short
and long wavelengths radiances responsible for the forcing

where “<.>" indicates statistical (ensemble) averaging an
Lesi is the effective outer scale of the cascade;) is the
ensemble mean large scale (i.e. the climatological value).
is a convenient scale ratio based on the largest great circl
distance on the earthf. ei=Leartt=20 000 km and the scale
ratio M/Leff is the overall ratio from the scale where the cas-
cade started to the intermediate schlg>L>1.

3 Analysis of models (Lovejoy et al., 2001, 2009a) have been found to have wide
scale range cascade structures so that the boundary condi-
3.1 Discussion tions and flux sources and sinks apparently do not introduce

characteristic scales and so need not destroy the cascades.
To our knowledge there have been no attempts to directly

check Eq. (1a) on either DNS or geophysical numerical sim-3.2 The model outputs

ulations. The closest is perhaps the multifractal characteriza-

tion of time signals in turbulent shell models (Biferale, 2003) 3.2.1 Discussion

or in “scaling cascade of gyroscopes” models (Chigirinskaya

and Schertzer, 1996; Chigirinskaya et al., 1998). While theWe chose two forecast models and one reanalysis, all rec-
former discretizes the NS equations in Fourier space keepinggnized as being state-of-the-art: the Canadian Meteorolog-
a small and fixed number of degrees of freedom per octavécal Centre (CMC) Global Environmental Multiscale (GEM)

in scale, the latter more realistically discretizes the equationsnodel, the NOAA Global Forecast System (GFS) model and
on a dyadic tree structure such that the number of degreethe European Centre for Medium range Weather Forecast-
of freedom increases with wavenumber. While the formering’s (ECMWF) reanalysis (ERA40). For the products of all
approach leads to multifractal behaviour in time (and hencehree models, we analyzed the three most dynamically signif-
presumably temporal cascades), the latter leads to space-tinieant fields: temperaturel’(, east-westy) wind fields, the

www.nonlin-processes-geophys.net/16/1/2009/ Nonlin. Processes Geophys13.&Q0D9



6 J. Stolle et al.: The stochastic multiplicative cascade structure

specific humidity &,; GEM, ERA 40) and the relative hu- 3.3 Testing multiplicative cascades

midity (&, GFS). In order to check for possibly latitude de-

pendencies, analyses were made both in the regions betwedtigure 1 shows plots of lag M, for T, u, h for both the
+30° (tropics) and+45° latitude. We did not consider the GEM analysis (=0; Fig. 1a, c, e) and the=144 h forecast
spatial cascade structure of climate models since their spatidFig. 1b, d, f) at 1000 mb, while Fig. 2 shows the correspond-
resolutions are relatively low. Table 1 shows the main modeling plots ¢, instead ofs, for GFS) for ERA40 (Fig. 2a,

characteristics relevant to the analyses here. ¢, e) and GFS analysis datasets (Fig. 2b, d, f) at 1000 mb
and Fig. 3 shows the moments nffield at 700 mb for all
3.2.2 The Canadian Meteorological Centre (CMC) datasets taken betwegi80° (Fig. 3a, ¢, ) ane-45° latitude
Global Environmental Multiscale (GEM) model (Fig. 3b, d, f). Note that the 1000 mb fields are more influ-

] ] . o enced by the data — although with nontrivial effects where the
This model is on & 0.25¢0.3 horizontal grid with 28 levels  opography is important — while the 700 mb fields are more
and our analysis used a 0:60.6> resolution product (about  representative of the free atmosphere. All the plots display
66 km resolution — the high-resolution CMC GRIB dataset). the typical cascade “signature” — the converging straight lines
We used 505 realizations at 12h intervals taken from 20pedicted by Eq. (10). The regressions were performed by
September 2007 to 2 June 2008 which are initialized at ei'minimizing the deviations (Eqg. 11, defined below) through
ther 127 or 00Z and analysed the initial objective analysis,5 common intersection point over the range from the grid
the 48 h forecast, and a 144 hour forecast. Days outside 0fcale to 5000 km. Since we test the predictions of multiplica-
this time interval were not used because the model resolutioye cascade models, all lines were forced to pass through
and grid were changed and assimilating results outside ofne same point (Eq. 10 with=Aef). Two remarkable fea-
this timespan to the results given here is non-trivial. ADVAR yres are: a) the cascades begin at an outer scale very close
6-hourly assimilation is used (CMC Global Data Assimila- {5 the scale of the planet and b) up 4000 km the cas-
tion System, DAS). The model can be adapted; s €t cade structure is accurately followed. Note tiak> Lyef
al. (1998a, b) for more details. (=20 000 km) simply indicates that there is residual variabil-
ity at planetary scales, whilEefi<Lyef indicates that it re-
quires a certain range of scales for the scaling to become de-

As with the CMC GEM model, the GFS is a global NWP veloped. ) ) . . _
model, which we also analyzed at its analysis and 48 h fore- 10 duantify the accuracy with which Eq. (10) is satisfied,

cast. It uses T254 Spectral and #6884 Gaussian grids on we characterize the deviations using the mean absolute resid-
64 vertical levels. The data is obtained on %x1° reso-  dals for the statistical momeni#, of orderg from 0.0to 2.0,
lution grid every 6 h: each initialization starts at 00z, 06z, for @ll points between the scale of the grid and 5000 km:

12Z, or 18Z. The data were taken from 1 August 2007 to 30
June 2008 (with the exception of 700 mbwhere the first 2 = [10910 (My) — K (9)10g10 (4/2efr)|- (11)
61 days were corrupted). The assimilation system used i

3DVAR (Okamoto and Derber, 2006) with an assimilation %_O ((:j(?nverftA t; a ipzi;C?nt (?IeV|at:on§j:]EOC|)é10An;i]<.) iv;zoi/s
cycle of 6 h. A total of 1340 realizations were analyzed, ev- US€9: W€ foun@ <=7 for all analyzed Telds a 0

ery 6h. For more information, see Sela (1982, 1988) anofor all initial analyses and short-range forecasts. This accu-
NCEP 6ffice note 442 (2003) ' ' racy is very close to those of the same moments of the visi-

ble and IR radiances over the range 10-5000 kmQ.5%,

3.2.4 The European Centre for Medium range Weather ~ LOvejoy et al., 2009a).

Forecasting’s (ECMWF) reanalysis (ERA40) For the fields, the scaling extends from the grid size up to
product ~5000-20 000 km. It is worth noting that the outer scales for

these fields{8000-27 000 km) are approximately the same
A reanalysis is the result of assimilating atmospheric mea-as the outer scales of the radiance000-32 000 km in
surements with numerical forecasts in an attempt to obtair_ovejoy et al., 2009a). We also mention that s are not
realistic fields; it is a very model dependent “product”. Here too different from theC1’s for passive scalars+0.1) (Lilley
a 6-hourly 3DVAR assimilation cycle was used. For ERA40, et al., 2004). Similar results were found for the moments of
the dynamic variables are on a 2-D triangular spherical harthe 2-D wind estimate of the energy flux.
monic truncation T159 with 60 levels (Uppala et al., 2005) From Table 2, we see that very similar results were found
projected onto a °Ix 1° resolution grid and interpolated to for GEM forecasts (Fig. 1b, d, f) and the GFS model; for ex-
constant pressure levels (1000 mb, 850 mb, 700 mb, 500 mample, the deviations are of the orde0.3% for the GEM
200 mb). We analyzed the most recent three years of the reand £0.5% for the 48 h GFS forecast for the analysis and
analysis: September 1999-August 2002 with a total of 438048 h forecast (Table 2a, b, ¢). These small deviations allow
realizations analyzed (every 6 h). See Uppala et al. (2005)s to conclude that the analyses and models do indeed ac-
for more details. curately have a cascade structure. Overall, from the table,

3.2.3 The NOAA Global Forecast System (GFS) model

Nonlin. Processes Geophys., 1615-2009 www.nonlin-processes-geophys.net/16/1/2009/



J. Stolle et al.: The stochastic multiplicative cascade structure 7

=0 =144 the external scale (which decreases all the moments by the
LogiM LogyM same factor). Interestingly, th& values are very similar for
the different fields (it is slightly larger for the humidity), al-
though significantly, the®; are quite a bit larger than those
measured by aircraft (Sect. 2.5 in Lovejoy et al., 2009b), also
shown in the table.

Also in Table 2a is a comparison of aircraft estimates of
the parameters from Lovejoy et al. (2009b) which included
an in-depth evaluation of the optimum scale range (4—40 km)
needed to avoid spurious aircraft effects. Since the aircraft
fluxes were estimated in the scaling regime, we don’t expect
the parameters to be identical to the dissipation range fluxes
estimated here (see the discussion in Sect. 2). However, when
the theoretical correction factor (assumingl.8) is used,
the agreement is seen to be good (it is much improved). Note
that the agreement is not expected to be perfect since Eq. (9)
depends on an explicit identification of the conserved flux;
while the argument is fairly robust for the velocity — as indi-
cated — it is not so for the other quantities. In addition both
the aircraft and model estimates will have some systematic

Figure 1a: Figure 1b:

Log;oM Log;oM

1 1

08 0.8
0.6 0.6
04 0.4

0.2 0.2

Loggod . . . . .
5 biases so that our main point is that the results are plausibly
Figure 1c: Figure 1d: consistent.
LogiM LogiM In order to estimate the parameter uncertainties, we calcu-

lated them over subsets of the data480° — each subset is
about 1 month long — as indicated in the last row of Table 1.
For all datasets, the maximum and minimum valuex dér
each subset in every dataset differ by less than 0.1 with the
following exceptions: ERA4G:, 850 mbar (0.27), ERA40

hsy 200 mbar (0.22). The maximum and minimum values of
C, for each subset differ by less than 0.008 for GEM and
=Jrm GFS and less than 0.014 for ERA40. The maximum varia-
tion in the estimates of lag)ess is less than 0.08 for GEM

1 1

0.8

04

0.8
0.6

2 04
7
,Z,

0.2 0.2

|

Figure 1e: Figure 1f:

and GFS and less than 0.2 for ERA40 with the following ex-
I -q ceptions for ERA40: i 850 mbar (0.2),1 200 mbar (0.2),
0 05 1 15 2 25 hs 850 mbar (0.3);; 200 mbar (0.5)). For the most part,

the deviations from the parameters estimated from 1 year of
data are small, but it should not be surprising that there are
M, <0) in steps of 0.14=Leart/L, Leart20 000km. They'A- occasional Iarger_dewatlons because large amounts pf data
moment colour key is given at the bottom of the figus=g are needed to estimate parameters accurately for multifractal
(reddish-orange) tg=2.9 (red)). Left, at time=0, on the right, the ~ data.

144 h forecast; from top to bottom, temperature, east-west wind, N Tj':‘ble 2b, we compare the two forecast models (GEM,
specific humidity, all betweee:30° latitude. (a) temperature at ~ GFS) in order to see if there are any systematic trends as the

Fig. 1. Moments of fields for GEM at 1000 mb f@r=0.0 to 2.9
(¢>1.0: LogoM, >0, monotonically increasingy<1.0: Logio

initialization; (b) temperature at 144 forecast;(c) « wind at ini- model integration times increase so that the effect of initial
tialization; (d) u wind at 144 h forecasf(e) &, at initialization; (f) conditions becomes less and less important. No systematic
hs at 144 h forecast. For the parameters, refer to Table 2b. trends are obvious, although for the 144 h GEM forecast, the

scaling is a bit poorer (although it is still very good with de-

viations less thar:1.6%). The scaling of the longest avail-

able forecast is important since it is of interest to determine
we can also see that thé(q) “shape parameter” — the dif- whether the cascade structure is imposed by the analysis, or
ficult to estimate multifractal index — is roughly constant whether it is generated intrinsically by the model (or more
ata~1.8+0.1. We examine the issue of the accuracy of thislikely a combination of both but with possibly nonidentical
parametric representation, Eq. (1b), in Sect. 3.4. From Tacascades). Since even after 144 h the initial conditions have
ble 2a, we see that the scale by scale characterization of theot been completely “forgotten” these results only support
intermittency near the meag’{) has a tendency to decrease the hypothesis that the long time behaviour of the model is
with altitude, this being somewhat amplified by a decrease incascade-like, they do not fully establish it.

www.nonlin-processes-geophys.net/16/1/2009/ Nonlin. Processes Geophys13.&Q0D9
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Table 1. Comparison of various model parameters. The time step is the model integration time step. The last row indicates the size of the
subsets used to estimate the uncertainties (see the text).

Model GEM GFS ERA 40
Time step 225 7.5 30
(minutes)Ty;

Model Spatial 0.25x0.3 0.47x0.47 1.128x1.12%
resolution (grid size)

Spatial resolution of 0%6x0.6° 1°x1° 1°x1°

the analysid.;

Number of vertical 28 64 60

levels

Number of realizations 505 1340 4384

in the sample

Time interval between 12 6 6
realizations (hours)

Size of dataset 25-25.5 days 30-30.5 days 1 month
subset (50-51time steps)  (120-122 time steps)  (116—124 time steps)

Table 2a. Intercomparison of cascade parameters for the initr0) fields for various fields at 1000, 700 mb. The triplets of values are

for, ERA40 (denoted by “ERA"), GEM, GFS respectively. The aircraft estimates are from about 200 mb (the figure in parentheses is from
aircraft analyses (Lovejoy et al., 2009c, Table 3@4r, «, Table 1 forLeg, §), the second is corrected by the factor (3/Bpeded — at least

for the wind field — to estimate the dissipation sa@lefrom the scaling rang€1, see Eq. 9).

C1 o Legt (km) 3 (%)

ERA GEM GFS ERA GEM GFS ERA GEM GFS ERA GEM GFS

T (1000) 0.113 0.125 0.142 194 164 172 21900 25800 28000 0.31 0.27 0.59
T (700) 0.094 0.077 0.080 2.11 194 2.00 14500 8300 8600 0.29 047 1.02
T (200) 0.080 0.080 0.065 1.93 1.88 185 12100 10700 7800 0.30 0.36 1.17
T (aircraft) (0.052), 0.107 1.78 5000 0.5

u (1000) 0.105 0.121 0.114 1.93 1.68 180 12900 11000 12300 0.33 0.32 054
u (700) 0.096 0.104 0.082 1.93 1.86 1.87 12000 11000 9000 0.24 0.29 0.83
u (200) 0.075 0.085 0.073 192 185 1.89 15900 16300 9000 0.267 0.35 0.76
u (aircraft) (0.040), 0.088 1.94 25000 0.8

hs, hr (1000) 0.121 0.109 0.128 203 181 186 19800 15900 21700 0.33 0.51 0.46
hg,hy (700) 0.094 0.100 0.091 175 160 1.74 11000 11800 9000 0.26 0.37 0.46
hg,hy (200) 0.085 0.109 0.100 1.73 154 1.70 50000 33000 9700 047 056 0.64

h (aircraft) (0.040), 0.083 1.81 10000 0.5

In Table 2¢, we compare the cascade parameters calculate®l4  Universality and Levy Collapse
betweent+30° and +45° to see if there are any detectable
differences between the tropics and a region including theThe main aim of this paper is to establish the fundamental
midlatitudes. A latitude effect might arise because of theprediction of multiplicative cascade models, Eqg. (1a). In Ta-
importance of the Coriolis force in the midlatitudes which ble 2 a-c we gave estimates of the external scalg, (Lef)
makes the large scale winds quasi-geostrophic. We find tha&nd the relative deviation of the model outputs from the the-
the only notable difference is that the outer scale is systemeretical predictions, averaging over the scale range 5000 km
atically larger for thet45° region. It could be noted that al- down to the grid scale and over the statistical momeggt2.
though we did not use equal area grids, the variation in gridUp until now, the additional hypothesis — that the outputs be-
size is still fairly small even at 45 long to multifractal universality classes — was only used to

Nonlin. Processes Geophys., 16152009 www.nonlin-processes-geophys.net/16/1/2009/
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Table 2b. An intercomparison of the 1000 mb fields, the triplets representing the parameter estimates for integration$8)f144 h.

C1 o Lt (km) 5 (%)
Oh 48h 144h Oh 48h 144h Oh 48h  144vh Oh 48h 144h
T (GEM) 0.125 0.115 0.113 164 168 1.69 25700 20500 21000 0.27 0.26 0.67
T (GFS) 0.142 0.138 172 171 27900 26000 0.59 0.60
u(GEM) 0.121 0.122 0.122 168 162 163 11000 11000 11000 0.32 036 114
u (GFS) 0.114 0.107 180 1.84 12300 11200 0.54 0.64
hs(GEM) 0.109 0.106 0.107 1.81 1.80 1.80 15900 13800 13500 0.51 0.49 154
hr (GFS) 0.128 0.128 1.86 1.81 21700 20900 0.46 0.46

Table 2c. An intercomparison of ranges of values of data in 700 mb fields between, pairs representing parameter estimates at analysis time
step for£30° and+45°. * The first two months were excluded because of corrupt data.

C1 o Legt (km) 5 (%)

+£30°  +45° £30° 45 +30° +45° 30° £45°

T (ERA40) 0.094 0.091 2.11 2.11 14500 21400 0.288 0.274
T (GEM) 0.077 0.082 1.94 2.19 8300 17000 0.47 0.36
T (GFS) 0.080 0.084 2.00 2.03 8600 11100 1.03 0.88
u (ERA40) 0.096 0.094 1.93 1.90 12000 14000 0.239 0.225
u(GEM) 0.104 0.106 1.86 1.84 10900 12600 0.295 0.34
u (GFS)* 0.085 0.082 1.87 1.87 9000 10100 0.83 0.69
hs (ERA40) 0.093 0.097 1.74 1.73 11000 14300 0.259 0.224
hs(GEM) 0.100 0.105 1.60 161 11800 14800 0.37 0.33
hr (GFS) 0.091 0.094 1.74 1.72 9000 9000 0.46 0.39

justify a two parameter((;, @) regression. Since both pa- estimated using only a finite number of realizations. Both
rameters have fairly simple interpretations (in terms of thethe bare/dressed distinction and the finite sample size give
closest monofractal approximatiof{) and the curvature of rise to (first or second order) “multifractal phase transitions”
K (g) nearg=1 (@)), the variation of these parameters with (Schertzer et al., 1993). This means that the measured
model type, integration time etc. can conveniently be used tqdressed) moments will only have the theoretical bare expo-
characterize the variation of the cascade structure. Howevenent K (¢) for g below a critical momeng, beyond which
we also argued that there are basic physical, mathematicdhere is a — multifractal phase transition — wh&rdecomes
reasons (essentially the existence of a kind of multiplicativeasymptotically linear (a sample size-dependent effect corre-
central limit theorem) that make it plausible that the model sponding to the domination of the statistics by the largest flux
outputs fall into special universality classes in which the ba-values present). In Fig. 4, using some representative compar-
sic scale invariant exponetit(q) is given by Eq. (1b) char- isons ofK (¢) and the fits to the universal multifractal form
acterized by just two paramete€s, «. In this section we (Eg. 1b), we see that the universal form is in fact very closely
explore the accuracy of Eq. (1b). followed except for hints of linearity for somg>g.>2. In

We must first note that even for perfect universal mul- fact for g <2, the deviations from the universal form are of
tifractal processes, Eq. (1b) is only expected to be strictlythe order+1 — +2%.
valid for the “bare” cascade properties, i.e. those of an infi- Assuming thatg.>2 then, the universal form Eq. (1b)
nite ensemble of realizations of a cascade developed down tshould hold over the rangedy <2 (we do not considef <0
scaleL=L/A and then stopped. However, when analyzing since on the one hand the statistics are very sensitive to very
the model output, we analyzed the “dressed” quantities, i.esmall gradients and are hence unreliable, and on the other, for
those obtained by degrading (by integrating) the resolution ofuniversal multifractals withw <2, they should diverge any-
a cascade developed to small scales (for the “bare”/"dressediay). In this case, one can attempt to “collapse” the log mo-
distinction see Schertzer and Lovejoy, 1987), and these werenents logM, to a unique curve by dividing logy, by the
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. i Fig. 3. Moments ofx fields analysis time step at 700 mbar §670.0
Fig. 2. Moments of the ERA40, GFS<0) fields at 1_000 m_bar to 2.9 ¢>1.0: LogoM,>0, monotonically increasingy <1.0:
for ¢g=0.0 to 2.9 >1.0: LogoM,>0, monotonically in- Log1oM, <0) in steps of 0.12=Leartty/L. Leartt=20 000 km. The

creasing; ¢ <1.0: Loglt(})qu<O) in steps of ,O'lfk_Lea”'”’/L’ ¢""-moment colour key is given at the bottom of the figuge@
Leartt=20 000 km. The;"®-moment colour key is given at the bot- e qgish-orange) tg=2.9 (red)). The left column are analyses
tom of the figure ¢=0 (reddish-orange) tg=2.9 (red)). Onthe  ponyeent3o fatitude, the right hand betweesd5®, top to bot-
left, ERA 40, on the right, the GFS, top to bottom: temperature, ;o ERA 40 (denoted by “ERA"), GEM:£0), GFS (=0). (a)

east-west wind, and humidity, betwes30” latitude. (a) ERA40  £pa40 hetweent30° latitude:;(b) ERA40 between-45° latitude:
temperature{b) GFS analysis temperatur@) ERA40u« wind; (d) (c) GEM betweent30° latitude: (d) GEM betweent45° latitude;

GFS analysis: wind; (€) ERA40Ay; (1) GFS analysidi-. Forthe (o) GES hetweent30° latitude; (f) GFS +45° latitude. For the
corresponding parameters, refer to Table 2a. corresponding parameters, refer to Table 2c.

theoretical K (¢) for (say) C1=1, i.e. by dividing by  which for universal multifractals, with <g. yields:
(¢*—q)/(x—1). If M, does indeed follow Eq. (1a) and (1b) , L
with parameters’1, «, then can define the “collapsed mo- ¢ = A

ments”™ ie., IogM(; =C1logx so that all the curves for the different
(@=1

M = (M )qa,q moments “collapse” onto a singfeindependent curve. Such
4 1 plots are interesting because, on a single plot, we can inde-
pendently evaluate both the scaling (the straightness of the
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KO Ko scales (where the number of independent structures sampled
06 . is lowest and the statistics are poorest). In Fig. 6, we show
05 05 f the systematic variation of the collapse with altitude, Fig. 7
04 0 with forecast time. The Levy collapse presentation has the
03 3 ( attractive feature of allowing us to superpose the correspond-
0w W ing fields of thg- different models, thus making succinct inter
a o // model comparisons possible.
In the previous section, we noted that for all the fields,
B 1 15 2 o5 U w1 15 2 25 0 the regression estimates efwere close to the value 1.8.
Looking more closely, we find overall that for a given field,
K K all altitudes have roughly the same There are some fea-
KO tures worth mentioning; for example, for GEM, is con-
6 sistently about 0.20 smaller than ERA40 feoy, while u
5 ' and7 at 1000 mb have~1.65 for GEM compared to 1.94
04 for ERA40 therefore show differences mostly not too differ-
3 ent (0.10 greater) for the higher altitudes. The GFS model
2 typically shows intermediate results between the two other
al datasets.
In order to see how varies for the same field but at differ-
"1 15 2 25 4 ent altitudes we calculated the “reduced momentg” *,

with C1 estimated numerically fron€1=K’(1). This sep-
arates the changes due to the mean intermitte€ncyrom

Fig. 4. K (¢) for T at 1000 mb 00:00 h timestep betwe#8(° for ~ changes in the shape due to differénk’s anda’s. If the

(a) GEM, (b) ERA40, (c) GFS. Dots are the calculated values for reduced moments are equal, then the only difference is in the

K (g) at eachy (0.0 to 2.9). Solid lines are fits fqa) C1=0.125,  mean intermittency(1) parameter. Figure 6 shows the re-

@=1.64(b), C1=0.113,2=1.94 and (c),C1=0.142,a=1.72. No-  duced moments fa¥, T, h; for GEM and ERA40 (the 48 h

tice the linear deviation of dots from the curves fpr2, which GEM forecast was very similar to the analysis) §e10.5 and

is indicative of a multifractal phase transition caused by the finiteqzz_ We see that the curves — including the small deviations

sample size. from linearity at large scales (smal) are very close so that
variations inC1 do indeed capture much of the field to field

. variability, variations in the value af and Les are indeed
collapsed lines) as well as the log-Levy nature of the gener-

ator — by the thinness of the collection of lines i.e. how well small.

at a given scale the different moments collapse, how well

they follow the functional form¢*—gq). If the flux follows 4 Conclusions
Eq. (1b), itimplies that the generator of the cascade (log flux)

is a Levy variable, index, so that we may call this a “Levy  gyer since Richardson speculated that atmospheric dynam-
collapse”. The “thinness” can be quantified at each stale jcg might be cascade-like, cascades have been regularly in-
by the relative standard deviation &f," as functions of: voked. However, most meteorological applications do little
A\ 172 more than identify a candidate cascade quantity, and then on
, T —_— the basis of dimensional arguments, determine (nonintermit-
o= 1OO(<L09M)\_L09MA) ) / Logh, tent) spectral exponents; cascades are primarily reduced to
conceptual aids rather than used as concrete models. Sta-
(the overbars indicate averaging with respect to the q values)istical mechanical-type arguments are sometimes further in-
In Figs. 5, 6, 7 we see that the collapse for the different mod-voked to determine the direction of the cascade. In this way,
els, different fields, different altitudes, different forecast pe-turbulence theory plays a key role by identifying a priori the
riods is very good, and this even out to scales where the scakascade quantity. The problem is that these theories have al-
ing is not so well respected. The right hand column showsmost always been isotropic or (quasi isotropic) in either three
for eachi the relative root mean square deviatiod)ef the or two spatial dimensions and have hence unnecessarily re-
collapsed curves. For all scales the variations inM;',gare stricted the investigations of the cascade hypothesis. In the
of the order+-2—+10% about the mean values (Fig. 5, 6, 7). last 10 years, when this classical approach has been used to
The main exceptions are at the single small scale (laigest test cascades on large scale numerical weather models and
point which is presumably a finite size effect associated withrelated products (especially, Atmospheric GCM for the Earth
the spatial discretization of the grid at the single pixel scale,Simulator, Hamilton et al., 2008 and ERA40, Straus and
as well as the occasionally deviationd0% at the largest Ditlevsen, 1999), it has been found to fare rather poorly. The

c)
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Fig. 5. Levy Collapse Diagrams, showing lpg\,'=
(@—1)Log1oMy/ (9% —q),  showing  moments, ¢=0.1,
0.2, 0.3, ...2.0, (excludingg=1.0) for each diagram
(left hand side), and their corresponding deviations

1/2
/LogM} as a function of

s=100{ (LogM; —Logh] )2

scale (right hand size). If at a given scalethe curves overlap
for all ¢ it implies that the generator (log) of the process is a Levy
random variable with corresponding index the “collapsed” log
moments=C1 logx (independent of;). In what follows, the red
curves are GEM, green are ERA40, blue are Glgyu 700 mbar:
GEM (red, «=1.9), ERA40 (greeng¢=2.0), GFS (bluex=1.85);

(b) percentage deviation of moments corresponding to ()T
1000 mbar: GEM (red, =1.7), ERA40 (greers1.95), GFS (blue,
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Logiol

Logiod

c) d)

Fig. 6. More Levy collapse curves (left), here as a function of al-
titude, and their corresponding deviatich&ight) as a function of
scale(a) GEM collapse curvea: 1000 mb (redp=1.7) , 700 mb
(green,«=1.9), 200 mb (bluex=1.85); (b) percentage deviation
as a function of scale, corresponding to (&) ~; ERA40: col-
lapse curves 1000 mb (regs2.05), 700 mb (greem,=1.8), 200 mb
(blue,a=1.73);(d) percentage deviation as a function of scale, cor-
responding to (c). The slope of the linesds and the horizontal
intercept is the outer scale given in Table 2.
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Fig. 7. More Levy collapse curves, (left) here as a function of fore-
cast time, and their corresponding deviatiémas a function of scale
(right) (a) GEM hg 850 mb:=0h (red,«=1.73,C1=0.90,A=0.31),

«=1.75); (d) percentage deviation of moments corresponding ;=48 h (greeng=1.77,C1=0.088,.=0.27),r=144 h (bluex=1.78,

to (c); (e) T 700mbar: GEM (red,x=2.05), ERA40 (green,
a=2.2), GFS (bluex=2.15); (f) percentage deviation of moments
corresponding to (efg) 700 mbark,: GEM (red,«=1.65), ERA40
(green,a=1.8), h, GFS (bluex=1.8); (h) percentage deviation of
moments corresponding to (g). The slope of the lingSisind the
horizontal intercept is the outer scale given in Table 2.
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C1=0.094,,.=0.26);(b) percentage deviation as a function of scale,
corresponding to ac) hy ERA40 collapse curves: 1000 mb (red,
«=2.00), 700 mb (greeny=1.97); (d) percentage deviation as a
function of scale, corresponding to (c). The slope of the lines is
C1 and the horizontal intercept is the outer scale, which is given in
Table 2 for (b). Note that the value may vary slightly depending
on the fitting method.
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consequence is that there is no currently accepted turbulen((LOg M)/C1
interpretation of the model statistics. 10
However starting in the 1960’s — in order to help under-
stand intermittency, — precise, explicit multiplicative cas-
cades models were developed. These phenomenologici
models are designed to reproduce some of the symmetrie
of the governing dynamical equations, specifically the scale
by scale conservation of turbulent fluxes, the scale invarianct
symmetries of the dynamics and localness in Fourier spac
(so that interactions are primarily between structures of simi-
lar size). An advantage of directly exploiting the scale invari-
ance is that no specific a priori assumptions need to be mad.
about either isotropy or about the physical nature of the cas-

p " - 1/C1
S ; ; ; . 8. “Reduced” G-normalized momentsM, ) between
cade quantity; the (generally anisotropic) scale symmetrleéz '9 _ q .
. - Lo +30° latitude of ordely=0.5 and 2 (bottom and top, respectively).
play a crucial role. It is now understood that the implica- Moments for ERA404q(teaI) ERA4(OT (cyan) ERK40h~p(blue) y)
tions are quite generic — they are insensitive to many detaiI%EM « (orange), GEMT (Ii,me) GEM h (gr’een) GFASA (pur-’
[ ’ N )

o) that.th.e St?.tIStICS are expected to obey th_e_ basic pred|ct|o}51|e)' GFST (magenta), GFS%, (red), and reference lines for a
of multiplicative cascades Eq. (1a). In addition, due to thecascade (black) witti.ef=11 200 km. The solid coloured lines are
existence of stable attractive universality classes (a kind othe mean value of the moments of a field over all pressure levels
multiplicative central limit theorem), there is an even more (1000, 850, 700, 500, 200 mb), while the error bars show the spread
precise prediction — that the expondfitg) should depend (maximum/minimum) in values for different altitudes.
only on two basic parameters (Eg. 1b).

Using (now standard) data analysis techniques, we demon-
strate that three leading numerical models of the atmospherﬁ

accurately follow the predictions of multiplicative cascade ¢ one. At the moment, this goal can only be achieved by
Y . b muttip a nontrivial marriage between the deterministic models and
models, including one (the reanalysis ERA 40) where ex-

. : ; . : stochasticity, which is currently artificially introduced via
tensive analysis of the classical (isotropic turbulence) ap- Y y y

. - . . various methods of generating initial conditions (e.g. “en-
proach failed to follow the predictions of the isotropic the- o
ories (Straus and Ditlevsen, 1999). In retrospect, it is l‘ortu—semble breeding’, see Corazza et al,, 2003). Other ad hoc

nate that the models nearly perfectly follow the cascade regttempts such as Buizza et al. (1999) and Palmer (2001) to
yp y Pretroduce the required stochasticity include attempts at sub-

_dlctlons becau_se an increasing number of analyses of EMPIGrid “stochastic parameterization”. With the findings of this
ical atmospheric data find that the atmosphere also has a Ca§-

cade structure, so that the statistics of the data and numeric laper that cascades accurately describe the stochastic struc-
models are at ieast in qualitative (structural) agreement Theure of the equations, several new avenues for modeliing ap-
quaiitative (Struc greet " .. pear. The stochastic parameterization in this case can be used
cascade structure of the intialisation fields makes it possbli
I

4
3
2
1

that the results are at least partially imposed by the constrain0 properly implement an ensemble forecast — so differences

P yimp y each member of the ensemble appear because of changes
that they are near the (cascade-like) dat However, in the fields due to the stochastic parameterization. In the
the forecasts — both short (48 h) and medium-range (144 h b j

s . hort term, using the cascades as theoretically “clean” sub-
— show that the model statistics are little changed althoughgrid parameterizations is promising, while in the medium to

there is a small increase in .the residuals, This suggests . long term, quite new more direct purely stochastic forecast-
— but does not prove — that if the same models were run in

o o . ; ing techniques will be possible by exploiting the long range
climate "?Od_e — i.e. for very long integrations — that they memory implicit in the cascade structures as mentioned in
would maintain a cascade structure.

. . s Scherzter and Lovejoy (2004).
Over the period where numerical and multiplicative cas- oy ( )
cade models were developed in parallel, they have sometimes _
seemed irreconcilable — if only because the former are de£\cknowledgementsie would like to acknowledge NSERC for
terministic with strong scale truncations, whereas the latter’onathan Stolle's scholarship support as well as Michel Bourqui,
are stochastic over arbitrarily wide rang,es of scale HOW_Andrew Ryzkhov, and Charles Lin for their helpful discussions
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