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ABSTRACT

The existence of multifractal fields in nature is recognized as a widespread phenomenon,
onc which describes a multitude of different systems. It is therefore necessary to develop
an understanding of their behaviour. Simulations play an important role in this
understanding. They are used to evaluate new analysis techniques, to determine if results
are reproducible according to a theoretically correct model, and particularly to simulate
complex interactions in geophysical fields, such as radiative scattering in clouds and the
forecasting of weather and earthquakes. They are also necessary for developing sampling,
averaging and calibration procedures for remotely sensed geophysical and astrophysical
fields. Thus, it is necessary 1o have a method of producing simulations of all the possible
cases of interest. These simulations may be produced for fields and time series with many
different parameters, including the sparseness of the actual field, differing probability
distributions and spectra, as well as those that exhibit anisotropic scale invariance, e.g.
stratified or differentially rotated fields.

1. Introduction

.A growing body of geophysical research is devoted to determining the scaling
properties of fields that arise in nature as a result of nonlinear processes acting over wide
ranges in scale. Geophysical fields including rainfall and cloud fields!2, temperature
fields3, topography# and the roughness of the ocean surfaceS and wind tunnel turbulence®
have been analyzed over various time and space scales and have been shown to be
multifractal in nature. In addition, such phenomena as earthquakes? and sea ice8, as well as
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apparent galactic luminosity? have been analyzed and shown to have fractal distribution,
and further research has demonstrated that all these fields are in fact multifractal in
nature.10.11.1213 As well, analysis of human speechl4, high energy hadron jets!3 and
pollution distribution from the Seveso industrial accident!® have all demonstrated that
multifractal fields arise in many disparate situations. (Universal multifractal parameters are
discussed in Section 2 and a fairly complete list of known results is summarized for these
fields in Table 1.)

" Given this ubiquity of multifractal fields, techniques to model them must be
developed. The early scaling models of geophysical fields were based on an assumption of
"simple scaling"17-18, resulting in the description of the field by a single fractal dimension.
The physical processes were thus modeled as monofractals, simulations of which were
produced by summing many random structures (e.g. the FSP model'®), by simply filtering
white noise (this is how Voss!9 created his impressive monofractal mountainscapes), or by
variations on these processes such as “midpoint displacement’20 or more recently “iterated
function systems’2L.

None of these models provide an adequate description of the actual physical
nonlinear dynamic process involved. The first step in this direction was the use of
multiplicative (nonlinear) processes which emerged from the study of turbulent cascade
processes. At first, great attention was paid to the monofractal special case, the “B-
model™2.2324.25. but this was shown to be unstable to small perturbations (which yielded
the multifractal “o-model”26. From the point of view of physical modeling, these early
multifractal models had several defects: they had discrete rather than continuous spectra
(which in addition, gave rise to ugly straight-line structures), but more fundamentally, they
involved an infinite number of parameters for their specification (the dimen sion function).
This made it highly unlikely that sufficient theoretical or empirical information would ever
be available to enable realistic models to be produced.

It turned out that the solutions to both problems were closely linked. The discrete
cascade actually simultaneously involved two limiting processes; the small scale limit and
the limit of an infinite number of interactions. By separating the two limits and considering
the densification (or more generally nonlinear “mixing” of processes) over a finite range of
scales, it was shown27:28 that due to the existence of stable, attractive “universal”
generators of multifractal processes, that many of their dynamical details could be washed
out if sufficiently many nonlinear interactions were available over a finite range of scales.
For universal multifractals, only three basic parameters are necessary Lo specify the entire

process (including the infinite hierarchy of fractal dimensions).
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However, important as it was to replace the linear monofractal models by nonlinear
multifractal models, such models involved self-similar multifractals in which the small and
large scale statistical properties were related by a simple “zoom” or magnification. On the
contrary, geophysical fields are seldom (if ever) isotropic, and the operator required to go
from large to small scale typically involves reduction coupled with compression, rotation or
more complex operations which can vary not only with scale, but also with location. Such
anisotropy is associated for example with texture and morphology. The formalism
necessary to define the notion of scale and scale change in such an anisotropic framework
is Generalized Scale Invariance (GSI)?%.30: The final step in making physically realistic
multifractal models is to therefore to combine continuous cascades (sections 2, 3) with GSI
operators (see section 5).

In this paper we bring up to date the techniques of simulating universal multifractals
and show for the first time how to combine the use of GSI with the continuous
multiplicative simulation technique to provide the most realistic possible model of nonlinear
dynamical scale invariant processes. In addition, former problems such as the previous
inability to simulate universal multifractals over certain ranges of the parameters have been
resolved. It is now possible to simulate universal multifractals over the entire theoretically
possible range. Finally, an attempt is made to provide a visual catalogue demonstrating the
effects of altering the parameters describing multifractality.

2. Universal Multifractals
From fractals to Multifractals

The transition from a fractal set to a multifractal field is fundamental in terms of the
resulting mathematical structure yet is not conceptually difficult to understand. The dis-
tinction is that in a (mono-)fractal set we obtain a single value for the dimension, whereas
with a multifractal field we can define a series of sets (e.g. using thresholds) each of which
will have its own (generally different) dimension. Given a multifractal field, we can look at
the sub-sets corresponding to thresholding at each given value. For example, in Fig.1, we
look at this type of field, analyzed at scale ratio A (for example, the ratio between image
size and pixel size in an image). The thresholds chosen are A" and A"™. The points
corresponding to field values €, greater than these thresholds form geometric subsets, as
long as the corresponding dimension is positive. With each of these geometric sub-sets we
can find an associated fractal dimension. If we look at the probability of finding a field

value greater than a given (scale dependent) threshold, we find28 that the probability,
Pr(e, > A'), can be related to the order of singularity, ¥, by :
Pr(g, >N ) =A™ ().

where €, corresponds to a singularity of order ¥ and the codimension function, c(y),
describes the sparseness of the field intensities: when smaller than the dimension of the
space in which the process is observed, the codimension is the difference between the
dimension of space and the fractal dimension of the geometric subset described by the
singularity value. It should be noted that when the codimension is larger than the dimension
of support (i.e. the dimension of the embedding space), the meaning is that in any given
realization, the corresponding values €, are almost surely not found: ¢(’y) is related to the
probability density, and field values with arbitrarily large codimension can appear because
the probability space defining the process is infinite-dimensional3!.

Although the codimension function ¢(7y} yields the entire statistical description of
the multifractal field, it can only be determined by empirical methods; there is no theoretical
form for the function, beyond that determined by the fact that it gives a probability density
(which only implies convexity). A more powerful result is what are called universal
multifractals3!, for which we will be able to write an explicit functional form for the

codimension function.
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figure 1—A schematic illustration of a multifractal field analyzed over a scale ratio A, with two
scaling thresholds Aand. 22 corresponding to two orders of singularity : y2>y1. (Lovejoy and
Schertzer(32))



Cascades

Multifractals can arise in nonlinear systems with both small and large numbers of
degrees of freedom. In the former, a few de grees of freedom characterize the probability
measure or phase space of the system; these systems are associated with calm, geometric
multifractals33. On the other hand, turbulent and turbulent-like systems involving many
degrees of freedom (e.g. fields) are often associated with stochastic cascade processes and
generally lead to wild and hard multifractals33, Geophysical and astrophysical applications
typically involve fields; we illustrate the cascade process using the example of the turbulent
energy flux €. The energy flux is injected into the system at a large scale cascades down to
smaller scales by successive multiplicative modulation down to a very small scale
dissipative regime. Figure 2 shows a schematic treatment of the cascade process. In this
figure, showing a discrete cascade, independent random increments Jig are generated at
each scale, proceeding in factors of two, and the field is multiplicatively modulated with
them: the energy is redistributed by boosts and decreases as one moves to smaller and
smaller scales. It is termed isotropic because the boxes are of the same shape (in this case
they are square).

When the redistribution of the cascading quantity € is uneven between the boxes, it

gives rise to what is called intermittency3435, This unevenness could be caused by either a
stochastic or deterministic process.
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Figure 2—A schematic
diagram showing a few steps ¥
of a discrete multiplicative i — ‘/',.
cascade process.(30) Bl s
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multiplicative cascade ‘ ‘ .
process the field €,,. should be statistically the same as taking the ficld at a scale ratio A an
multiplying each "box" of size 1/A by the field at a scale ratio A’ which has been reduced by
a factor A. Symbolically, &,,. =T, (€,.)€,. Ty is a scale changing operator which reduces
scales by a factor A; for the moment we consider isotropic (standard) reductions in scale. In
section 5 we indicate how this can be greatly generalized. .

Since this is a multiplicative property it is therefore convenient to introduce an

S i 1.
(additive) generator of the field, I', =Ing, , which satisfies the additive group property-=:
Tip ST +15, (2)
Given that this is the case, we can consider the multiplicative field as being produced down
to very small scales by an additive process on the generators. -

In multifractal fields, different moments of the field are governed by different
power-law relations: i.e. the field is multiscaling. That is, given a multifractal field €, at a
scale ratio?8 A,

<e_ﬂq) = lK{qJ(£1q> 3
Hence, we have a function K(q) depending on the moment of our field that describes how
the statistical properties of each moment behave under isotropic dilations and contractions.

Considering for convenience a normalized field at the largest scale, i.c. (e;’) =1,

we can rewrite Eqn.(3) in terms of the generator2831 :



(e3) = {(exp(al’,)) = exp(K, (q)) = A*@ “

This equation shows that the function K, (q)=K(q)log(A) that describes how the
statistical moments of the field behave with respect to the scale ratio A is actually the second
Laplace characteristic function corresponding to the generator1.37 T',, that is, the
logarithm of the Laplace transform of the probability density. Given this, we can now
determine the form of the generator.

In order to obtain multiscaling, we wish the generator to be a noise with a possible

weighting function, such that it has the following properties32;

1) The spectrum of the field must scale as k', in order to obtain the scaling behaviour: that
is, a logh divergence of K, (q).

2) The generator must be band-limited to wave-number between [1,1]: this is to ensure that
for scales smaller than A+, the field will be smooth; A will therefore be the resolution of
the field.

3) The probability distribution of the generator must fall off more than exponentially
quickly for positive fluctuations. This is to ensure convergence of K(q) for g>0.

4) It must be normalized so that K(1)=0. This is the condition of conservation of the mean
of the field at varying scales; (g, ) =1.

Having noted these properties, it now remains to determine the type of noise
generator to use. As mentioned in the introduction, we know little about the functional form
of the codimension function, and thus the K(g) function, beyond the very general
restrictions placed upon them until now. The abandonment of the geometric monofractal
approach to nonlinear variability for the less restrictive and more accurate multifractal
approach was necessary for the proper understanding of actual physical processes.
However, in effect, we have traded the description of our nonlinear process via a single
parameter (the fractal dimension), for an infinity of parameters describing the hierarchies of
dimensions and singularities. This situation is rectified by the introduction of universal
multifractals, whereby we can once again describe nonlinear variability in terms of a few
fundamental parameters, where these parameters are no longer geometric, but dynamic3!.
We can observe how these parameters, and thus the universality classes they describe, arise
by considering the generator of a multiplicative cascade. We therefore examine the
properties of the sums of random noises, corresponding to the additive process on the
generator of the field, by looking at the problem of random walks3®, which are additive
processes.

A random walk in d dimensions is merely the addition of independent random
VECLOIS X,,X,,..., with random direction and random length. Let us assume (for now) finite

variance of the length. Here we take the expectation or mean of the length = 1. Then the
normalized sum of this random walk has its distribution tend toward the normal

distribution36;
S _ XX AX,
n = +n

¢="% )
where the distribution of S, will tend towards the normal distribution as n — co. The
covariance matrix of the d components of each vector, cjj (the usual for a normal
distribution) will be diagonal with elements 1/d. This is the standard central limit theorem.
Although for historical reasons the terminology "universal" is seldom used in this context,
this is in fact the most commonly studied universality class for the addition of random
variables.

This procedure can be extended to the case where the variances of the vectors are
not finite. In this case, the normalized sum of the independent vectors has a distribution that
tends toward any member of a class of probability distributions, known as Lévy
distributions, which form the complete universality classes of addition of random variables
(they are the only stable, attractive classes of random variables under addition). The

analogue of Eqn.(5) is3
S = Xy +X;+.+X

n n® (6}

where S, has the property that the distribution S, + b, tends toward the distribution of the
random variables x;, characterized by the Lévy parameter «, taking on values O<a<2.
The term by, is a recentering term, required for a>1, such that the distribution is centered to
zero expectation.

Although the probability density of most members of this class cannot be written in
closed form, the characteristic function can be. In fact, the second Laplace characteristic
function of this type of random variable, assuming convergence, has the form37:

K(q)=q® 0<a<2, o=l 7
K(q) = qln(q), a=1
where @ is the Lévy parameter describing the probability distribution of the noise (in fact
« is the exponent of the power-law fall-off of the tail of the probability density36).

In our case, we wish 1o obtain the continuous limit of a multiplicative casca
As a discrete cascade proceeds to the small scale limit, we are in fact taking two limits; an
infinite number of random variables and the limit of infinitely small scales. In this case the
normalization condition (condition 4) implies that {I’,)<0 which is not in general
compatible with the centering and normalization required for the central limit theorem to

d631‘38,



apply. The result is that discrete cascades will generally not tend to universal limits (a fact
that has unfortunately obscured the issue of universality and even lead to claims that no
universality classes exist3%). However, if on the contrary we first keep the total scale ratio
A fixed and finite and proceed by multiplying by independent processes of the same type,
then universal behaviour, i.e. that described by Eqn.(7), will be produced3®. The small
scale limit can be taken later; this involves its own difficulties, however these are quite
distinct from the question of universality classes. The continuous cascade is built in such a
manner by densification, adding more and more intermediate scales in a given multiplicative
process.

Thus, since we wish our generator to be stable under addition, we choose it to be a
Lévy noise with some parameter o, appropriately weighted and filtered so as to satisfy the
other necessary conditions mentioned above. In order to ensure convergence (i.e. to keep
K(q) finite for g>0) an extremal asymmetric Lévy variable must be used27.31.38, Since the
field €, is obtained by exponentiating T';, which is a sum of these noises (the equivalent of
undergoing a multiplicative cascade process), convergence is required.

Multifractals obtained using the Lévy noise generator with parameter o will have
the following moment scaling function, K(q), relating the scaling of the moments and the

scale:
C

o
K(a)=—"-(a"-q) (8).
given that o#1, where 0 < <2. C1 is the codimension of the mean of the field,
characterizing the sparseness of the mean, and the Lévy index o characterizes the degree of
multifractality3l. As o — 0 K(q) becomes linear and the monofractal B-model22.23.24.25 ig
approached; a=2 corresponds to a lognormal model.

We can obtain from this via a Legendre transform the codimension function31:

LA T i
=C| =—+—
e(v) ’[Cla +0:J ©)

Where 1/a+1/a’= 1.

The K(qj has the o.-dependence we expect for a Lévy noise, with the linear term
arising due to the normalization requirement that K(1) = 0. Hence we can determine all the
statistical properties of a process using only the two parameters, o and C;.

For nonconservative fields?831, such as density fields f related to €, in a scaling
manner (‘Afllz €,A™"), there is a third fundamental parameter, H, which is a measure of
the degree of (scale by scale) non-conservation of the field:

jag,f)y=2" (10).

The value of H can be determined from the scaling of the power spectrum and the moment
scaling function. If necessary, a spectral filter (fractional integration) of the form k" can be
used to transform a non-conservative field into a conservative field. This will be described
below. For now, we note that since the energy spectrum E(k) is the Fourier transform of

the autocorrelation function (a second order moment), we obtain E(k) ~ k® where
B=1-K(2) {conservative) an

Bp=1-K(2)+2H (non-conservative)
We thus see that the parameter H also specifies the degree of statistical non-

stationarity ("non-homogeneity") of the field.
If H # 0, then the universal forms for K(q) and c(y) are given by:

K(q) = K(q) —qH (12)

and .

c(y—H)=C{CLt+é] (13)
(i.e.y—=vy—-H).

Finally if the parameter ¢ is identically unity then (for all values of H):

K(q)-qH=C,-q-log(q)
and

c(}'—H)=Clcxp(—gT— ] (14)

Again as expected. Eq. (14) can be seen to follow from taking the limit as @ — 1 of

Egs.(12) and (13) and applying ’HOpital’s rule. .
It is worthwhile at this point to note the correspondence between the formalism of
universal multifractals and the strange attractor formalism. In the f(a)-1(q) notation we

have the following32Z:
fp(ap)=D—c(y), oy =D—7v

Tp(@) =(@-DD-K(q) (15)
Parameters for many multifractal fields have been measured. Some of these are

tabulated in Table 1.



Fleld o <1 H Range of scales Refs
Clouds Visible 135 [0.I15 [0.3 160m— 4000km 2)
Clouds Infra Red 1.35 [0.15 [0.4 160m—s 4000km 2)
Clouds Microwave T60 [0.10 [0-35 | 160m— 4000km m
Rain Radar T35 (030 0.0 |30m— 6akm )
Sea Ice (radar) 1.7 0.05 [0.0 50m—25km (10)
Ocean surface (0.930m) T |02 [P35 ol i s0m )
Topography 1.8 0.05 [0.5 50m—1000km 4)
Seismicity 1.35 1.9 0.0 1km—500km (11)
Pollution (Seveso) 1.2 0.8 -0.2 30m—s5km (16)
Raingauges 1.35 [020 0.0 50km— 4000km (2)
Wind windtunnel 130 1025 (173 Tms—s 1's (3)
Wind atmosphere 1.45 [0.23 |13 Tms— 15 (6)
Temperature 120 035 030 [0.15— 1000s [€))]
Low frequency speech 2.0 0.1 =35 |0.1s—1000s (14)
Hadron Jets 0.7 0.6 il = (15)
Apparent Galactic Luminosity [ 1.0 1.0 = 0.3°55" (12)

Table 1: Multifractal parameters determined for a variety of fields with the corresponding ranges of
scale. The accuracy of most parameters is ~ +0.1,

3. Simulation
Discrete Cascades

The simulation of a discrete cascade is straightforward. Given that we wish to
simulate universal multifractals, i.e. those whose statistics are described by Eqgs.(8)-(9), we
specify the C; and o desired and use the noise that corresponds to this to obtain the
generator. We generate unit Lévy variables with parameter o and modify their amplitude
by multiplying by the constant (C,(ov/cx))%
noises are generated according to the procedure given by Chambers et al37, who give an

required to obtain the desired C;. These

expression for the representation of an extremal Lévy-stable variable of index o, S(c):

sino(@-D,) (cos(CD -o(D-D,))

{l-a)fa
(cos®)"® w ) o=l e

S(a) =

2( w W cos @

®, =2 (1-[1-op/a (1)

Here, @ is a uniform random variable on (-7/2,7/2), and W is a standard exponential
deviate, with W and @ mutually independent. The constant (Cl(a’/a))%‘ is needed as the
above procedure assumes that the scale parameter is unity. This technique for generating
stable random variables necessitates the production of only two random variables and
correspondingly few operations upon them, and is thus superior to the slowly converging
algorithm given in Wilson2? , which uses the property that Lévy variables are stable
regions of attraction to generate them by renormalized sums of many hyperbolic variables
with exponent o.. Although it is stated that the number of terms, n, in the sum must be very
large (n=30 for a=1.5 is suggested), further tests have shown that for accurately
reproducing K(q) over a reasonable range (e.g. q<5), particularly for o near 2, n is much
larger than previously believed?0 .

Given a desired scale ratio A, at each scale A from the largest scale to the smallest
scale 24 independent noises with the desired parameters are generated These noises, once
generated, are then exponentiated to give the multiplicative increments. Each point of the
field is then considered to be contained in a specific box at each scale and the field value at
that point is given by the product of all the corresponding multiplicative increments. (See
Fig.2). The field is then normalized, in keeping with the conservation of the mean
condition. To normalize the field, we divide by the expected value of the non-normalized
field. This is equal®! to A%/ Ttis, in fact, this factor which gives rise to the linear term
in q in Eq.(12). This is done rather than dividing by the mean of the specific field produced
because we wish conservation only on an ensemble of fields. Conservation helds only on
the ensemble average, but will be broken on any particular realization. This is termed
canonical conservation.313 Much more restrictive processes involving exact conservation
on each realization (called "microcanonical conservation") are also possible, but such
processes do not have well-defined universality classes, eliminate the strong singularities,
and have properties which depend on the exact details of the construction process including
the discrete ratio used to define the microcanonical conservation law.

The disadvantage of using discrete cascades to simulate multifractal fields is that the
discrete cascade is nonphysical: energy does not actually cascade in scale steps of factors of
two, or of other integer ratio. Also, at least in its usual real-space implementation, it
involves straight construction lines which are highly unrealistic: they can result in, for
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Figure 3. Two—di ional di imulati 256x256. The seed is constant.

241

example, square clouds. It is necessary to use continuous cascades, obtained by the
densification of discrete cascades, to get an idea of what the actual physical process looks
like. Examples of discrete cascades are given in Figure 3.

Continuous Cascades

In order to physically simulate the densification of the cascade process, we use
Fourier Transform techniques. We therefore look for the Fourier space generator that will
satisfy the four conditions laid out previously. We proceed in the following manner:

Given the desired value for o and C;, we proceed as for a discrete cascade,
producing for each grid point a noise (C,/(&— 1)"S(@).

In order to weight the noise to obtain a logarithmic divergence of K, (q), this noise
is then Fourier transformed using an FFT. The distinction between a continuous transform
and the discrete FFT is taken into account by multiplying by a constant, K, (A). This is
related to the Euler constant correction described elsewhere2”.28, Taking into account the
scale ratio and dimensionality dependence, this constant is just the ratio of the integral to the
sum, in d dimensions, over the total scale ratio:

A
[xa’k
Ks(A) = l‘x_l"
=%

We now wish to obtain the 1/f-noise spectrum, to give multiscaling behaviour. To

do this it is necessary to weight the Fourier transform of the Lévy noise. The correct

(19)

weighting factor can be determined by considering the property of a Lévy random
variable36, S(o):

(exp(aS(a)) = exp(q”) (20)
This property requires that, to achieve a spectrum of k!, a weighting factor3! of
w(x) o< [x|* is needed for the real-space noise S(0.,x); this corresponds to a factor of
wi(k) =< [k| ¥*in k-space. In addition, the noise is band-limited by filtering out all noises
except those concentrated in the band with wave-number between 1 and A, using a filtering
function f(Ak). This yields for the generator

r,= 5*{(%)*«'&@@,@&&‘““ KK, (x)} @1)
(& represents the inverse Fourier transform). The function f(A.k) is chosen to be one

for [k| <X, and decaying exponentially for [k|>A. This is in order to filter out wave
numbers greater than A (as required by condition 2). Since sharp cutoffs (8-functions or
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step functions) in Fourier space cause real-space sine wave "ringing" effects, an
exponential decay is used. This adds negligibly ( less than 1% ) to the constant K, (A) for A
> 128. However, if desired, this factor can be taken into account by the appropriate
modification of Eqn.(19)

Finally, the weighted noise is transformed back into real space and is exponentiated
to give the required field &, It is also normalized by dividing by the expected value of the
field (i.e. X/®™") to satisfy condition 4, following the process described in the discrete
cascade section.

Examples of continuous cascades in one dimension are given in Figures 4-7 and
12-13. These simulations are over a scale ratio of 256 (extending this to larger ranges
rapidly increases the variability of the field, resulting in a field that is difficult to visualize).
Computationally, it is not difficult to extend this to much larger fields, depending on the
computing power available—on a Silicon Graphics IRIS 4D/35, the generation of 100 one-
dimensional simulations with A=214 will take on the order of 8 minutes. For very large
sizes the limiting factor is not so much the computation time but the memory requirements
of an array of the size of the field.

Fig.4 shows a series of simulations for C;=0.9 and varying values of c. The fields
are vertically offset from each other. As o decreases, the high values of the field do not
dominate as much as for larger values of o; there are more large deviations from the mean,
as we expect for the "thick" tail of the probability distribution. In the case where C;=0.01
(Fig 5), the fields are typically at values near 1, with spikes in both directions. The fields
with higher values of a are seen to have a more symmetric distribution of deviations from
the mean. Since C; is so small, the fields are nearly space-filling. This is seen particularly
for =1.04, where the field is nearly uniform in comparison to higher o.-values and there
are primarily regularities (i.e. downward spikes). This is evidence of the fact that as o
decreases, the Lévy noise in fact becomes asymmetric with only negative hyperbolic
jumps, i.e. "Lévy holes"31. When the field is renormalized, the lowest values are "washed
out". This is most obvious when C; is small.

Figures 6 and 7 show series of one dimensional simulations with fixed o« and
varying Cy. It is apparent from them that C; is the measure of the sparseness of the field:
the higher the C;, the fewer the field values corresponding to any given singularity.
(Because the field is normalized, the spikes appear higher for the fields with higher Cp). It
is also again apparent that the higher o fields are dominated by a few large singularities.

Examples of two-dimensional continuous cascade simulations are given in Colour
Illustrations 1-3. These fields have been k-H-filtered for easier recognition of the salient
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Figure 4. One-dimensional simulation of length 256, with C1=0.9 and varying c. These
simulations have been vertically offset so as not to overlap.
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Figure 5. One-dimensional simulation of length 256, with C1=0.01 and varying o. These
simulations have been vertically offset so as not to overlap.
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Figure 7. One-dimensional simulation of length 256, with @=2.0 and varying Cy. These
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gth 256, with o=1.4 and varying Cj. These

€1=0.48

€1=0.32

Cy=0.04

8-11. The same features can be noted for the differing values of & and Cy. The ficlds with
higher values of o are generally dominated by a few areas with upward spikes (i.e.
singularities); the lower o-valued fields have more high-valued singularities. The degree of
sparseness that C characterizes is fairly obvious from the illustrations. (Although recall
that after filtering C; is no longer the codimension of the mean of the visualized field, it still
provides a description of the sparseness). For higher C, the fields are sparsely scattered,
with only a few large singularities, while as Cy is reduced, the field becomes more and
more space-filling. Note that in these illustrations the fields are rescaled so that their
maximum values are at the same apparent height regardless of value; for the colour
illustrations all colours are given by actual field value.

It should also be noted that a modification in the simulation procedure must be made
for fields with o < 1. In this case, direct use of the factor w(k) < [k|™* leads to numerical
overflow (recall that o <1=> @’ < 0); to avoid this problem it suffices to filter by using the
numerical transform of the real-space term w(x) = [x|“. The remainder of the simulation

program proceeds as above.
4. Fractional Integration and Non-Conservative Quantities

In order to simulate certain physical fields, for example clouds, or galaxies, it is
necessary to introduce the parameter H explained above, describing the degree of
conservation of the field. To see how this arises in various physical systems consider the
example of passive scalar clouds, i.e. cloud fields which are passively advected by the
turbulent velocity without themselves affecting the latter; these obey Corrsin-Obukhov
scaling#!. A sizable body of turbulence theory exists for these. From the Navier-Stokes
equations and the equation of passive advection we find that the nonlinear terms exactly
conserve the following quantities?s:

e =-9(v*)/dt = constant
x=—0(p’)/ot = constant 22)
where v is the velocity field and p the concentration, and € and ) are the energy and scalar
variance fluxes respectively . Dimensional analysis implies that
Av(l) =PI
Ap(l) = @17 (23)
where ¢ = x Ve
A passive scalar cloud therefore already involves two nonlinearly coupled cascade
processes, for € and ; in general we will need to use vector cascade processes, using the
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Figure 13. One-dimensional simulation of length 256, with a=1.5 and C1=0.4, fractionally
integrated with varying H (non-conservation parameter). These simulations have been vertically offset so as
not to averlap.

new formalism of "Lie cascades"42. Here, we make the simplest assumption, that ¥ is
completely statistically dependent on €. The field p therefore satisfies Ap ~¢'*f'"* . The
cube-root of the conserved field is easy to calculate. To introduce the /' factor, we
transform the field back into Fourier space and multiply it by the factor k7. This is in
effect a fractional integration of order3! 1/3. It results in a scale-invariant smoothing of the
field. For a general non-conservation parameter H, the simulated conservative field is
fractionally integrated by multiplying in k-space by k®. For H>0, this results in a
smoothing of the field; H<0 corresponds to a differentiation and leads to a roughening of
the field. It must also be noted that, since the factor k™ will become infinite for positive H
as k—0, the term (corresponding to the mean of the field) cannot be fractionally integrated
using Fourier techniques3!; it must be integrated seperately in real space. The k=0
component € of a simulation of linear size L is obtained by the following multiplication :
e- (L) 24)
One-dimensional examples of H-filtering are given in Figs 12 and 13. The effects
of H-filtering can be clearly seen. The higher the value of H used, the smoother the field
which is obtained (remembering that due to the scale, the H-filtered fields are increased in
size relative to the normalized conservative field). On the other hand, negative values of H
accentuate the singularities already present in the field. The smoothing and roughening
effects are also clearly seen in the 3-dimensional representation of a two dimensional
continuous cascade. (See Colour Illustration 4). It can be noted that the smaller spikes,
when sufficiently H-filtered, are almost eliminated, while for negative H, the field is
extremely spiky. One can also note that negative values of H lead to the production of
"regularities", sharp downward spikes, as is expected for a differentiation of the field.

5. Generalized Scale Invariance

A multifractal field is developed from a process that is scale-invariant. In its
simplest form, this scale-invariance is isotropic; the resulting multifractals are self-similar,
exhibiting no preferred direction in space. However, geophysical fields are seldom, if ever,
isotropic. Preferred directions associated with texture and morphology exist whose
anisotropy often varies with scale. Isotropic scale-invariance indicates that the (statistical)
properties of a field are changed in a power-law way with an isotropic change in scale of
space, such as zooming. More generally, we can consider a system to be scale-invariant if
this property remains true under more general nonisotropic scale changes. That is, there



exists a scale changing operator®!3 for a given scale ratio A, T,, such that given balls B,
at this scale ratio,
T,B, =B, (25)
T, is the rule relating the statistical properties at one scale to another and involves
only the scale ratio (there is no characteristic “size”), so that x, = T,x,, where x; and x,
are vectors on B, and B, respectively. This implies that T, has certain properties. In
particular, if and only if A1Ap = A, then

B,=T,B, =T, B,

2 - (26)
i.e., T; has the group properties:
Ta, T, B =B, =T, T, B @n
Ty,
A

% x:Y Ty

Figure 14—Illustration of the group property of the scale changing operator.(18)

In generalized scale invariance (GSI), T,, the scale-changing operator, can be much
more general than the standard isotropic dilation. As indicated earlier, in general, a scale
invariant system will be one in which the small and large scales are related by a scale
changing operation that involves only the scale ratios; there is no characteristic size.
Following the development of Schertzer and Lovejoy43, we note that to be completely
defined, GSI needs more than a scale changing operator; it also requires a definition of the
unit scale, as well as a definition of how to measure the scale. These three basic elements
can be summarized as follows:

L

i) The unit ball B; which defines all the unit vectors. If an isotropic ball (i.e., circle
or sphere) exists, we call the corresponding scale the “spheroscale”.

ii) The scale changing operator T, which transforms the scale of vectors by scale
ratio A. T;, is a one parameter multiplicative group = T, = A%, where G is the generator of
the group.

If G is an n x n matrix and x is an n-dimensional vector then we may use:

276 = exp(-G-In(})) = 1 - G-In(A) + %GZ-IHZ(?L) = (28)
This is linear GSI*. When G is a more general (i.e., nonlinear) generator, we must define
L7 by differential equations using the fact that G defines infinitesimal transformations.

iii) A measure of scale such as some power of the volume of B, ; the exact
definition is somewhat a matter of convenience or convention.

The simplest type of scaling is self-similar scaling, as in isotropic cascades. Here,
T = A1=G= 1, where 1 is the identity matrix. Taking B ; as the unit circle, the balls
B; are circles.

A more interesting case occurs when the scaling is different in two (or more) fixed
directions, e.g., coordinate axes. This type of scaling is called “self-affine™: G is a diagonal
matrix. A simple example is an anisotropic scaling model of atmospheric stratification,
which provided the initial impetus for developing GSI?%:30, Consider a vertical cross-
section of the atmosphere (see figure 16), using

10 X
G=[0Hz:| and x= I:Z:[ : (29)

where x is the horizontal distance and z is the vertical distance. Then the relation x; = T;x1,
where X1 is the position vector of the unit ball (a circle in this case), becomes

10

o
e L S W P e R (30)

3, Z 0 AHz| [% A~Hz.g,
When A>>1, then the cells are strongly vertically aligned. Defining the unit vectors x1 as
circles, this corresponds to structures (e.g., clouds) whose average cross-sections are
circular—this is the “spheroscale”. When L<<1, they are horizontally flat.



Figure 15—Self-similar scaling.

Figure 16—Self-affine scaling with H,=5/9. The shape of the balls models the average eddy
shape; the flattening of the large balls models the fact that the atmosphere is increasingly stratified at large
scale, and the small-scale vertically oriented balls correspond to "convective” cells or "rain shafts”

Figure 16 shows an example of a deterministic self-affine fractal set. As expected, the
structures which are initially horizontally flat at large scales become more and more
vertically flat at small scales.

One might also expect differential rotation (e.g. associated with Coriolis force in the
atmosphere for clouds). This can be modeled by a matrix G with off-diagonal elements.
We decompose G into quaternion-like elements29:45 ;

G=dl +el +{J+cK,
where

fro [o-1
1_[0 1] : 1_[1 0}, @31)

To obtain A~C = ¢®"*  we use the series expansion of the exponential function
with the following identities:
(G-d) = (e I+f J+c K)2n = a2nl, (32)
(G-dl)tl =a2n(G-d1), (33)
where n is an integer and a2 = c2+ 2- 2 Writing?®4 U =1nA:

T, =A° = A = l“‘[:lcosh(aU) -(G- dl)—Sinh(aU):l
da

(34)

When a2<0, the above formula holds but with |a| replacing a and ordinary trigonometric
functions rather than hyperbolic functions. The case a2>0 corresponds to domination by
stratification, whereas a2 <0 to domination by rotation.

The application of GSI to simulations is an important one; most geophysical fields
include some element of anisotropy, such as gravitation and the Coriolis effect of the
earth's rotation in the case of the atmosphere, or, in the case of earthquakes, preferred
direction along the faultline. In addition, GSI has been used in the simulation of galaxies?3;
rotation dominance leads to spiral galaxy shapes, while stratification dominance tends to
lead toward barred galaxy shapes.

Simulation of GSI

In order to model the effects of GSI, it is necessary to make some changes in the
steps explained above. Rather than the usual dimension, we now use the elliptical
dimension, given by d.,=Tr G, the trace of the GSI matrix. The volume of the balls By,
varies as A%, so it is necessary to replace d by d.. In addition, the weighting factor
w(k) o< [k that determines the multi-scaling is changed not only by this replacement. It
also becomes necessary to replace the modulus [k| by A(k). All the filters must be
appropriately anisotropic.

In order to determine A(k), we consider GSI in Fourier space. Given x, =T,x,,
we wish to determine the Fourier space operator T, such that k, = T,k, (corresponding to
T,). In fact, by assuming the existence of matrices G and G that generate the scale changing
operators (with T, =A™ and 'T‘l = l‘é), and requiring invariance of the scalar product



under scale changes, it can be shown445 that G=G. It remains to solve for the scale A
from the equation k, = T,k;, i.e. to find A such that k, =T;'k,; when Kk, is on the unit
circle, this requires !'i'fkl‘ =1. To solve this, we need in addition a definition of the unit
ball, i.e. some U;=Ini, that defines the spheroscale. Given this, in two dimensions the
scale A can be found. Eq.(34) is used to determine T, and the equation k, = T,k, is
expanded to yield the following transcendental equation®4;

In(Pcosh®(a(U - U,)) + Qsinh*(a(U - U,)) - R(sinh(2a(U - U, ))) = 2U

P=kZ+Kk?
Q= KX+ (F—e)) + ki(c: +(f +e)?) + 4k, k, ce 353
a
2
o (ki —kDe+2k k f
a
U=Ini

This equation is then solved for A for each value of k, and k,, and this value is
then used in place of k in the weighting function w(k). The same must be done for the k*#
filtering if the field is to be fractionally integrated. By examining Colour Illustration 5, the
effects of different GSI parameters can be seen. Altering the matrix G to produce rotation-
or stratification-dominant fields noticeably changes the texture of the resulting simulation.
Stratification dominant fields will have structures smaller than the spheroscale compressed
in the direction of stratification, while structures larger than the spheroscale will be
stretched in that direction. The total rotation as A is increased from 1 to o is less than /2.
Rotation-dominant fields are differentially rotated; the orientation of the large-scale
structures is rotated with respect to the smaller-scale ones, an infinite number of rotations
as ) is increased from 1 to co. Some stratification is useful to make this clearer.

In addition, the size of the spheroscale plays an important role in determinin g the
nature of the resulting field. A very large spheroscale (Fourier space: this is small in real
space) combined with stratification, for example, will result in a great deal of "streakiness"
at the large scale in real space, since the spheroscale in real space will be at the small scales:
these will be isotropic. On the other hand, with a spheroscale midway between the largest
and smallest scales, stratification will be seen in opposite directions at the large and small
scales in the resulting field.

Simulations can also be made where there is no spheroscale. In this case, a function
describing some scale of the desired simulation must be described. Pflug# and Lovejoy46
use the first three symmetric terms of a Fourier expansion to describe r(8), i.e.

r(0)=ry+a,5in(20)+a,sin(40)+b,cos(208)+b,cos(48). (The Fourier transform of a real field
respects the symmetry F(k)=F*(-k) hence we require r(8)=r(n—8)). The scale at which this
function is described must be given, and care must be taken that the operation of scale-
changing on the given function does not result in an overlapping of scales. (That is, within
the range of scales in question the scale-changing operator acting on this r(0) function gives
a single-valued answer: the definition of scale must be unique). Other methods of defining
groups of functions closed under scale-changing are currently being examined. Examples
of GSI without spheroscales are shown in Colour Illustration 5. Many different textures are
possible with the use of non-spheroscale GSI.

6. Conclusions

Scale invariance seems to be a property common not only to complex geophysical
fields, but to aspects of biology and astrophysics as well. In the absence of any symmetry-
breaking mechanism, scale invariance will be preserved, and even given the breaking of
certain symmetries, anisotropic scale invariance may be preserved. We have examined how
quite general assumptions concerning scale invariance lead to the idea of multifractals, and
how nonlinear "mixing" (including densification) of multiplicative cascade processes leads
to the production of universal multifractal fields. The empirically estimated parameters for
many of these fields have been tabulated.

Simulations are an invaluable tool in the comprehension of multifractals, and in
their use as physical models. Physical processes on multifractals which have already been
explicitly considered with the help of such models include the radiative and diffusive
transport on multifractals47, the electromagnetic scattering properties*3, and the sampling
and averaging properties of sparse measures*’. We have described how to simulate both
discrete cascades and the more physically relevant continuous cascade, for a general
dimension of space. Several points mentioned in earlier papers have been clarified and the
ideas expanded upon. In addition, the production of non-conservative fields by scale-
invariant roughening or smoothing has been discussed. This allows generation of fields
such as topography and the passive scalar cloud field.

Finally, the use of generalized scale invariance in the production of anisotropic
cascades has been discussed. Many physical systems show a preferred direction, and the
use of GSI allows the simulation of such effects as differential rotation and stratification in
directions which can be functions of scale and position. As well, this framework can be
used for the generation of time-series and forecasts, where the space-time transformation is

not necessarily an isotropic one.
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Further work is necessary in a number of areas to increase the utility of simulations.
Higher dimensional GSI is very involved and the simulation of three-dimensional and
higher dimensioned fields is not currently possible except for special cases. Additionally,
techniques for simulating non-linear GSI, which can only be locally approximated by
matrices, are lacking. All of these techniques will also be extended to more general fields of
vector quantities, through the use of Lie cascades?2. Applications of the simulation of
universal multifractals are also being developed, including methods for forecasting time
evolution of rain and cloud fields as well as prediction of earthquakes, and models of

radiative transfer in clouds.
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image# | O C1 H G matrix u, spheroscale | ry,a;,b;,a,,b, (see text
1 | &) 0.1 0.5 1.20 0.05 y, =In100 =
[—0.05 0.60]
2 L7 101 0.5 100 0.40 u, =1n100 -
[—0.30 0.30)
3 L7 101 0.5 130 0.20 u, =1n50 -
[—0.10 0‘70)
4 L7 01 |05 130 0.20 u, =In1000 |-
(—0.10 0.70)
5 1.7 0.1 0.5 L10  0.40 none 100, 10, -20, 15, 15
(—0.10 0.90)
6 1.7 0.1 0.5 0.50 —0.30) |none 100, 0, 20,0, 20
(4}.20 1.10

Table 2: Multifractal and GSI parameters for the images in Colour Illustration 5.
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Colour Illustration 1.
2-D simulations , with
varying o and C;.
Seed is constant.
H-filtered with H=0.5
The palette is shown
below. White wvalues
are high, blue low.
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Colour Illustration 2.
2-D simulations , with
varying o and C;. Seed
is constant, H-filtered
with H=(.5

The palette is shown
below. White values
are high, blue low.
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Colour Ilustration 3.

2-D simulations , with
varying o. and C;. Seed !
is constant. H-filtered

with H=0.5

The palette is shown
below. White values : e
are high, blue low,
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Colour Ilustration 4. 3—dimensional representations of fields with a=1.7 and C;=0.2, and
variable H-filtering.
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Colour Illustration 5.
2-D simulations , with
varying GSI parameters
Seed is constant.
a=17, C]_‘OI
H-filtered with H=0.5
The palette is shown
below. Red values are
high, black are low.
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Colour Illustration 6.
Simulations using
parameters from Table
1. GSI was included.
From top, two cloud
simulations (visible
spectrumy),two
topography simulations
and two simulations of
galactic luminosity
distribution.





