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The spatial stochastic structure of deterministic models of the atmosphere has
been shown recently to be well modelled by multiplicative cascade processes; in
this paper we extend this to the time domain. Using data from the European
Centre for Medium Range Weather Forecasting’s (ECMWF) reanalyses (ERA40)
and two meteorological models (Global Forecast System and Global Environmental
Multiscale), we investigate the temporal cascade structures of the temperature,
humidity and zonal wind at various altitudes, latitudes and forecast times. First, we
estimate turbulent fluxes from the absolute second-order time differences, showing
that the fluxes are generally very close to those estimated in space at the model
dissipation scale; thus validating the flux estimates. We then show that temporal
cascades with outer scales typically in the range 5–20 days can accurately account
for the statistical properties over the range from 6 h up to 3–5 days. We quantify the
(typically small) differences in the cascades from model to model, as functions of
latitude, altitude and forecast time. By normalizing the moments by the theoretical
predictions for universal multifractals, we investigate the ‘Levy collapse’ of the
statistics somewhat beyond the outer cascade limit into the low-frequency weather
regime. Although due to finite size effects and the small outer temporal scale, the
temporal scaling range is narrow (12–24 h up to 2–10 days), we compare the spatial
and temporal statistics by constructing space-time (Stommel) diagrams, finding
space-time transformation velocities of 450–1000 km day−1, comparable to those
predicted based on the solar energy flux driving the system. This transition time-
scale corresponding to planetary size structures objectively defines the transition
from usual weather to a low-frequency weather regime with much lower variability.
Finally, we discuss the implications for ensemble forecasting systems, stochastic
parametrization and stochastic forecasting. Copyright c© 2012 Royal Meteorological
Society
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1. Introduction

‘Weather prediction by numerical process’ (Richardson,
1922) is widely celebrated as the pioneering work laying
the basis of modern numerical weather forecasting. In

it, Richardson eschewed approximations and attempted
a brute force numerical integration of the dynamical
fluid equations. While these equations are deterministic,
numerical weather prediction has been increasingly
transformed into sophisticated ensemble forecast systems
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(EFS). This modern incarnation of ‘Richardson’s dream’
(Lynch, 2006) has the stochastic objectives of predicting the
future states of the atmosphere as well as their probabilities
of occurrence. Ensemble forecast systems involve stochastic
subgrid parametrizations (Buizza et al., 1999; Palmer,
2001; Palmer and Williams, 2010) and therefore require
knowledge of the stochastic properties of the deterministic
models.

Interestingly, Richardson is not only the father of
numerical weather forecasting, he is also – thanks to
his iconic poem describing cascades – considered to be
the ‘grandfather’ of cascade approaches. Following the
development of the classic turbulence laws of Richardson,
Kolmogorov, Obhukhov, Corrsin and Bolgiano and starting
in the 1960s, these have spawned explicit stochastic
cascade models. Today these are well understood and are
known to be the generic multifractal process. Multifractal
intermittency has been reported widely in laboratory and
small-scale atmospheric experiments from the mid-1980s
onwards (see the review by Anselmet (2001)). Recently the
deterministic and stochastic approaches have been shown to
be surprisingly compatible. Stolle et al. (2009) analysed both
meteorological reanalyses (European Centre for Medium
range Weather Forecasting’s (ECMWF) reanalysis (ERA40))
and meteorological forecasting models ((Global Forecast
System (GFS) and Global Environmental Multiscale (GEM))
and showed that the spatial statistics of the turbulent fluxes
associated with the temperature, zonal wind and humidity
were indeed very close to those predicted by cascade models
with deviations typically < ± 1% over the range of 5000 km
down to the model/reanalysis (hyper) viscous dissipation
scales. Lovejoy and Schertzer (2011) found similar results
for the ECMWF interim reanalysis products, extending these
results to the geopotential height, to the vertical wind, and
to the meridional wind fields as well as the corresponding
turbulent fluxes. At the same time, the increasing availability
of remote and in situ global-scale data has made it possible
to directly confirm that these also have qualitatively and
quantitatively very similar cascade structures up to planetary
scales. The similitude of the global-scale data, models and
reanalyses provides the basis for understanding atmospheric
variability over huge spatial scales – see the reviews by
Lovejoy and Schertzer (2010, 2012a). A wide-scale range
of cascade processes is possible because it appears that the
vertical structure of the atmosphere is scaling but with
different exponents than in the horizontal structure. This
implies that the cascades are anisotropic with structures
becoming progressively flatter at larger and larger scales
but in a scaling manner (Lovejoy et al., 2007, 2009a).
For a theoretical model based on the (fractional) vorticity
equation, see Schertzer et al.(2012).

These model, reanalysis, in situ and remote-sensing
studies have shown that the wind and other atmospheric
fields are scaling over wide ranges (see Lovejoy et al. (2009b)
for the reinterpretation of aircraft measurements of wind).
The wind is critical because physically it advects the fields
and dimensionally it connects space and time. This suggests
that the fields should be scaling in time as well as in space.
It even seems that the corresponding space–time relations
can even be quite accurately deduced from first principles,
and the argument (Lovejoy and Schertzer, 2010) goes as
follows. Starting from the top of the atmosphere, there is
roughly 1 kW m−2 of incident solar energy flux. Of this,
about 200 W m−2 is absorbed by the Earth (Monin, 1972). If

we distribute this over the troposphere (thickness ≈ 104 m),
with an air density ≈ 1 kg m−3, and assume a 2% conversion
of energy into kinetic energy (Palmén, 1959; Monin, 1972),
then we obtain a value ε ≈ 5 × 10−4m2s−3, which is
indeed the typical value measured in small-scale turbulence;
see the review in Lovejoy and Schertzer (2010) – more
modern data yield the global estimate ε ≈ 10−3 m2s−3,
although with some variation with altitude and latitude
(note, m2s−3 = W kg−1). If we now use the Kolmogorov
relation �v(�x) = ε1/3�x1/3 – which is apparently valid
in the horizontal (but not vertical) up to near planetary
scales – then we find that using Le = �x ≈ 20 000 km,
�v ≈ 20 m s−1 and the corresponding lifetime of structures

(‘the eddy turn-over time’) is τw = L2/3
e ε−1/3 ≈ 10 days.

While the predicted velocity difference is very close to the
mean planetary antipodes differences (17.3 ± 5.7 m s−1),
the lifetime is quite close to the transition from the
weather regime to the low frequency weather regime
(‘spectral plateau’) with much flatter spectra (Lovejoy and
Schertzer, 1986). Figure 1 shows that for instrumental
surface temperatures, the implied ‘dimensional transition’
does indeed occur near this scale. Similarly – although
the data are much sparser – the ocean appears to have a
global (near surface) energy flux εo ≈ 10−8 m2s−3, implying
(again using Le) a critical ocean time-scale τo ≈ 1 yr,
as confirmed in Figure 1 using sea-surface temperature
(SST) measurements (this estimate is from ocean drifter
data; see Lovejoy and Schertzer (2012a) for this and for a
comprehensive review). For shorter scales, the spectra of
‘ocean weather’ sea-surface temperatures are very similar to
atmospheric weather temperature spectra, whereas at longer
time-scales they also display a marked flattening, a spectral
plateau although with a larger (absolute) spectral exponent.

The upshot of this is that we expect the meteorological
models and reanalyses to display a scaling cascade structure
for high ‘weather’ frequencies, ω > ωw = τ−1

w and that this
will break down at scales somewhere in the vicinity of 10 days.
Whereas for the high weather frequencies, E(ω) ≈ ω−βw

with generally βw > 1, in the ‘low-frequency weather’
regime (ω < ωw) we find a relatively flat ‘spectral plateau’
(Lovejoy and Schertzer, 1986) with βw < 1. However, the
significance of the transition is best appreciated in real space
by considering fluctuations �f of an atmospheric field f .
Since both the weather and the low frequency weather
regimes are scaling we have �f ≈ �tH , and the transition is
from H > 0 to H < 0 at ωw. This implies that whereas in the
weather regime fluctuations tend to grow with scale (�t),
in the low-frequency weather regime they tend to diminish
with scale. Physically, the low-frequency weather regime
is thus perceived to be ‘stable’. In Lovejoy and Schertzer
(2012b) it is argued that this stability can be exploited by
averaging over the entire low-frequency weather regime (out
to a transition to the climate regime at ωc ≈ (10 yr)−1 to (30
yr)−1, where H is again > 0) to define a climate ‘state’; the
even lower frequency variations in this state corresponds to
our notions of ‘climate change’.

Although this paper focuses on the weather regime,
it is necessary to make a few more comments on the
weather, low-frequency weather and the transition between
the two. Since many atmospheric processes have weather
spectral exponents βw near the value 2, and since the
corresponding βlw is small, the Ornstein–Uhlenbeck (OU)
spectrum E(ω) ∝ (ω2 + ω2

0)−1 (i.e. with βw = 2, βlw =
0 and transition at ω0) is approximately valid. An OU
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Figure 1. This figure superposes the ocean and atmospheric spectral
plateaus showing their great similarity. (Left) A comparison of the
monthly sea-surface temperatures (SST) spectrum (bottom, blue) and
monthly atmospheric temperatures over land (top, purple) for monthly
temperature series from 1911 to 2010 on a 5◦ × 5◦ grid; from NOAA
NCDC data (Smith et al., 2008). Only near-complete series (missing less
than 20 months out of 1200) were considered: 465 for the SST, 319 for
the land series; missing data were filled using interpolation. The reference
slopes correspond to spectra of the form E(ω) ≈ ω−β with β = 0.2 (top),
0.6 (bottom left) and 1.8 (bottom right). A transition at 1 yr corresponds
to a mean ocean εo ≈ 1 × 10−8m2s−3. Note the apparent beginning of a
low-frequency rise at around (30 yr)−1. (Right) The average of five spectra
from a sections 6 yr long of a 30 yr series from daily temperatures at a station
in France (black, top, taken from Lovejoy and Schertzer (1986)). The red
reference line has a slope 1.8 (there is also a faint slope 0 reference line).
The relative up–down placement of this daily spectrum with the monthly
spectra (corresponding to a constant factor) was determined by aligning
the atmospheric spectral plateaus (i.e. the top right black and top left
purple spectra). We have included common Ornstein–Uhlenbeck (OU)
process fits (orange dashed lines) to each of the datasets to demonstrate
that this common fit does not agree with the trends in the data. This figure
is available in colour online at wileyonlinelibrary.com/journal/qj

process is precisely a Gaussian process with this spectrum
and it corresponds to white noise smoothed over frequencies
> ω0. Multivariate OU processes are used as the basis for
stochastic linear modelling approaches for scales up to ≈ 1
yr, see for example Penland (1996).

As a model, there are two shortcomings of OU processes:
(i) neither high- nor low-frequency exponents have quite the
right values (implying that there are long-range statistical
dependencies); (ii) that it neglects the strong (non-Gaussian)
intermittency in the weather regime (discussed below). In
Figure 1 we compare the atmospheric and SST spectra with
OU spectra fit to the high-frequency parts of the spectrum
and we see that it is not perfectly flat, but that βlw ≈ 0.2
for the atmospheric temperature and βlo ≈ 0.6 for the SST
spectra (‘lo’ for ‘low frequency ocean’). There are now many
studies estimating βlw and βlo, most of which find βlw in the
range 0.2 to 0.4 (Koscielny-Bunde et al., 1998; Fraedrich and
Blender, 2003; Bunde et al., 2004; see Eichner et al. 2003;
Huybers and Curry, 2006) and for sea-surface temperatures
βlo ≈ 0.6 (Monetti et al., 2003; Huybers and Curry, 2006);
this issue is reviewed in Lovejoy and Schertzer (2012b) where
it is also argued on the basis of generalizations of cascade
processes that these exponents are theoretically expected.

In the following, although we do compare our results to
the predictions of OU processes, of necessity they will not
be too different from the model analyses. This is because the
corresponding model and reanalysis outputs are available
only every 6 h at best – and for many (especially near-
surface) fields there is a technical analysis difficulty due to
the diurnal cycle – so that the scaling range up to τw (in the
range 5–20 days) is quite limited. Nevertheless in this paper

we attempt to quantitatively characterize it and compare it
with the corresponding spatial cascades and to intercompare
the various products.

This paper is structured as follows. In section 2 we present
the numerical outputs, which we analyse, and we explain
the technique for estimating the fluxes in both space and in
time, touching on other relevant cascade studies. In sections
3 and 4 we recapitulate pertinent spatial cascade results from
Stolle et al. (2009) and we then systematically examine the
temporal cascade structure for the different fields (horizontal
wind, temperature, humidity), different models and as
functions of altitude. In section 5 we compare the statistics of
the fluxes estimated in the spatial domain at the dissipation
scale with those estimated in the temporal domain in the
scaling regime. We then discuss space–time (‘Stommel’)
diagrams and show how to empirically construct them from
the outputs using the spatial and temporal scale-by-scale
flux statistics. We comment on the large space limit and the
transition from weather to climate. Finally in section 6 we
conclude.

2. Multiplicative cascades, turbulent fluxes and analysis
techniques

2.1. Multiplicative cascades

2.1.1. Spatial cascades

During the 1960s and early 1970s, intermittency was
increasingly acknowledged as an important phenomenon,
but its effect was usually considered small, leading
primarily to small ‘intermittency corrections’ to the spectral
exponents. The main statistical models (such as those
used in statistical closures) assumed non-intermittent
‘quasi-Gaussian statistics’. The Gaussian model leading to
the classic Kolmogorov law �v = ε1/3�x1/3 (for velocity
fluctuations �v over distances �x) is obtained by taking
a Gaussian white noise energy flux ε and giving ε1/3 a
(fractional) integration of order 1/3 (i.e. a power law filter
of order −1/3); the resulting v is a ‘fractional Brownian
motion’.

In order to take into account intermittency, it suffices to
replace the Gaussian ε by the result of a multiplicative
cascade; this is the fractionally integrated flux model
(Schertzer and Lovejoy, 1987). In multiplicative cascades,
large structures are broken up into smaller daughter
structures that multiplicatively modulate the flux; this
process is repeated to smaller and smaller scales (see Figure 2
for a schematic). Normalized cascade processes generally
lead to multifractal fields with statistics:

〈ϕq
λ〉 = λK(q); λ = L/l, (1a)

where ‘< . >‘ indicates ensemble (statistical) averaging, ϕ

is the turbulent flux (e.g. the energy flux ε) normalized
such that < ϕλ >= 1, K(q) is a convex function describing
the scaling behaviour of the qth moment, λ is the ratio
of the (large) scale L where the cascade starts to the scale
of observation l. Note that in the quasi-Gaussian (non-
intermittent) classic model we have the trivial K(q) = 0.

2.1.2. Universality classes

Since the cascade is multiplicative, its logarithm, the
‘generator’ is additive. It is therefore not surprising that – due
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Figure 2. The left of the figure shows a schematic of an isotropic cascade. Due to nonlinear interactions with other eddies or to instability, a large
eddy/structure (indicated as a square) breaks up into daughter eddies (smaller squares). Following the left-most arrow the energy flux is redistributed
uniformly in space, the result is a homogeneous (non-fractal) cascade. Following the right-hand arrow, at each cascade step, we randomly allow one
eddy in four to be ‘dead’, and the result is that turbulence is only active on a fractal set. At the bottom, we see the average shape as a function of scale
of more realistic (isotropic eddies). The right-hand column is the same except that it shows an anisotropic cascade, a model of a vertical cross-section
of the atmosphere (on the left a homogeneous, on the right, inhomogeneous, fractal model). The degree of stratification is characterized by an elliptical
dimension Del = 1.5 in the example. (From Lovejoy and Schertzer (2010), adapted from Schertzer and Lovejoy (1987)). This figure is available in colour
online at wileyonlinelibrary.com/journal/qj

to the additive central limit theorem for the sums of identical
independently distributed random variables – there are
specific (stable, attractive) ‘universal’ forms for the exponent
K(q):

K(q) = C1

(α − 1)
(qα − q), (1b)

where 0 ≤ C1 ≤ d is the ‘co-dimension of the mean’,
which characterizes the sparseness of the set that gives the
dominant contribution to the first-order statistical moment
(the mean), and d is the dimension of the space over which
the cascade is observed (Schertzer and Lovejoy, 1987). The
multifractal index 0 ≤ α ≤ 2 characterizes the degree of
multifractality, i.e. the shape of the K(q) function. It is
also the Levy index of the generator. If the cascade is
uni-/monofractal, then α = 0 whereas α = 2 corresponds
to the ‘log-normal’ multifractal. A ‘universal multifractal’
is the basin of attraction for a wide variety of different
multiplicative processes. In our analyses, we will see that the
universal form (Eq. (1b)) fits the empirical K(q) quite well so
that irrespective of whether the numerical models are indeed
universal multifractals, the parameters C1 and α give very

convenient parametrizations of their forms and characterize
the sparseness near the mean (C1) and the curvature (and
hence multifractality) near the mean (α). In this paper we
therefore often use C1 and α to reduce the characterization
of the scaling (via the exponents K(q)) to manageable
proportions. In any event, we show that over significant
ranges of scale, the data display ‘Levy collapses’ when the
moments are normalized by the theoretical universal K(q),
and this even for scales somewhat outside the scaling range
(see Stolle et al. (2009) and section 5 below). In other words,
the universality relation Eq. (1b) may be respected even
when the scaling relation (1a) is not.

2.1.3. Space–time cascades, causality

If the velocity field is scaling in space, we expect the entire
model to be scaling in space–time – at least up to time-
scales corresponding to the external (planetary) scale. This
is because physically the wind transports the fields and
dimensionally it connects space and time. However, it is not
enough to simply relabel one of the axes in Figure 2 as a
time rather than as a space axis, even if we make the cascade

Copyright c© 2012 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2012)
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anisotropic by differentially stratifying it (the right-hand
side of Figure 2). The problem is that these pedagogical
discrete in scale cascades are fundamentally left–right
symmetric, and hence the result of merely relabelling a
spatial axis as ‘time’ would be acausal. However, it turns out
to be fairly straightforward to make causal space–time
cascades (Marsan et al., 1996), but the corresponding
processes involve causal fractional integrations and cannot
be illustrated as conveniently. The data analyses that follow
are valid irrespective of the causal nature of the data: we will
confine ourselves to pure temporal analyses (treating each
pixel as a separate series), we will have the same formula as
Eq. (1a) except that λ = τref /τ where τ is the time-scale over
which the flux is estimated and τref a convenient reference
outer time-scale, taken here as the total length of the time
series.

2.2. Estimating the turbulent fluxes

In order to test Eq. (1a) we must therefore use an approach
that does not require a priori assumptions about the physical
nature of the relevant fluxes nor of their scale symmetries
(isotropic or otherwise). If atmospheric dynamics are
controlled by scale-invariant turbulent cascades of various
(scale by scale) conserved fluxes ϕ then in a scaling regime
the fluctuations �f (�t) in an observable f (t) (e.g. wind,
temperature or radiance, t is time) over a duration �t
are related to the turbulent fluxes by a relation of the form
�f (�t) = ϕ�tH (this is a generalization of the Kolmogorov
law for velocity fluctuations – for temporal fluctuations in
a Lagrangian frame, H = 1/2, and ϕ = εη, η = 1

2 and for
spatial fluctuations we have H = 1/3 and ϕ = εη, η = 1/3).
Without knowing η or H – or even the physical nature
of the flux – we can use this to estimate the normalized
(non-dimensional) flux ϕ’ at the smallest resolution of our
data:

ϕ′ = ϕ/〈ϕ〉 = �f /〈�f 〉. (2)

Note that if the fluxes are realizations of pure
multiplicative cascades then the normalized η powers,
εη/〈εη〉, are also pure multiplicative cascades, so that
ϕ′ = εη/〈εη〉 is a normalized cascade quantity.

The fluctuation�f (�t) can be estimated in various ways;
the simplest way is to use either absolute first or second
differences (respectively �f (�t) = |f (t + �t) − f (t)|
or�f (�t) = |f (t) − (f (t + �t) + f (t − �t))/2|)
with �t the smallest reliable resolution (we assume statisti-
cal translational invariance, no t dependence). These ‘poor
man’s wavelets’ are usually adequate – when as is typically
the case, 0 ≤ H ≤ 1 (first) or 0 ≤ H ≤ 2 (second) differ-
ences are used. Alternatively other definitions of fluctuations
(other wavelets) could be used. In the temporal analyses
used here, we utilized absolute second differences, which
are the same order of differences as the finite difference
Laplacian used in the spatial analyses (Stolle et al. (2009), see
also below). In section 5.1 we compare the temporal scaling
of the two fluxes. Taking �t = τi as the smallest available
time-scale and 
 = tref /τi as the corresponding ratio
this yields: �f
 = |f (t) − (f (t + τi) + f (x − τi))/2|).
The resulting high-resolution normalized flux estimates
ϕ
 = �f
/〈�f
〉 can then be degraded (coarse-grained
by averaging) to a lower resolution τ > τi scale ratio
λ = τref/τ < 
.

As empirical data are nearly always sampled at scales
much larger than the dissipation scales, the scaling-range-
based technique described above has wide applicability. In
numerical models, however, where we have data down to the
dissipation range, we find that the approach still works, but
that the interpretation can be a little different. To see this,
consider the example of the energy flux, ε = ∂v2/∂t. Taking
the scalar product of the velocity equation with velocity v
and recalling that at the dissipation scale the nonlinear terms
are negligible, we obtain:

ε = ∂v2/∂t ≈ νv · ∇2v, (3)

where ν is the viscosity.
Considering the spatial dependence, standard manipula-

tions (Landau and Lifschitz, 1959) give:

ε ≈ ν

(
∂vi

∂xj
+ ∂vj

∂xi

)2

≈ ν

(
�v

�x

)2

, (4)

(summing over the component indices i, j = 1,3) so that if
�x is in the dissipation range (e.g. the finest resolution of
the model) then

�v ≈
( ε

ν

)1/2
�x. (5)

The models actually use hyperviscosities, which have
the advantage of confining the dissipation to a small
range of scales (about a factor of three). This means
that their dissipation is due to a Laplacian raised to the
power h (typically h is either 2 or 3), this is discussed
in Stolle et al. (2009); they still lead to �v ∝ ε1/2, i.e.
to ϕ′ = εη/〈εη〉 with η = 1/2. We therefore see that the
spatial scaling in Eq. (5) – which is only valid for �x
in the dissipation range of the model – leads to the
dissipation range estimate ϕ′ = εη/〈εη〉 with η = 1

2 , whereas
the corresponding scaling range (i.e. the Kolmogorov law,
essentially dimensional analysis but without the viscosity
ν) leads to the scaling regime formula �v ≈ ε1/3�x1/3,
i.e. to η = 1/3. In Stolle et al. (2009) we show how to
relate the statistics of the dissipation range normalized
flux ϕ′ = ε1/2/〈ε1/2〉 to the statistics of the scaling range
normalized flux, ϕ′ = ε1/3/〈ε1/3〉 .

Consider now the temporal fluctuations at the dissipation
scale. We see that since ε = ∂v2/∂t, the relation between
�v, �t and ε must be of the form ε = (�v)2/�t, so that we
obtain:

�v ≈ ε1/2�t1/2. (6)

Hence once again we have ϕ′ = ε1/2/〈ε〉1/2 = �v/〈�v〉,
i.e. η = 1/2; the same as the spatial dissipation range
exponent. Interestingly, unlike the spatial case where the
dissipation scale �v(�x) depends on the viscosity as well
as ε, in time �v(�t) does not explicitly involve ν and the
dissipation scale relation Eq. (6) is actually the same as
the classic Lagrangian relation, which holds for �t in the
scaling regime (Inoue, 1951; Landau and Lifschitz, 1959).
Alternatively, with a large-scale space–time transformation
velocity Vtrans, we can take �x = Vtrans�t and use the
Kolmogorov formula in space to obtain η = 1/3 – see the
discussion in section 5.2.

In the data analysis performed below we did not estimate
�v(�t) at the (model) temporal dissipation scale, which is
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of the order of the integration time step (τst) (see Table 1),
instead the fluctuations were available only at the much
longer scaling range �t of 6 or 12 h (ERA40, GFS or
GEM, respectively, see Table 1). The only caveat is that
there is a (non-scaling) diurnal cycle that mostly affects the
temperature at the 1000 mb level; this can lead to poor flux
estimates. This can be avoided either by taking the analysis
inner scale τi = 24 h (at the price of losing some temporal
resolution) or by detrending the fields by subtracting the
time-averaged value at each time for each longitude and
latitude as was done in this work.

The fact that the spatial and the temporal analyses both
involve the fluxes ϕ′ = εη/〈ε〉η; η = 1/2, shows that we are
analysing the same physical quantity: in one case degrading
it in the spatial domain, and in the other case the temporal
domain. In addition, if space–time is roughly isotropic,
then when they are systematically degraded in resolution
in either space or in time we expect to find a single linear
space–time relation between them. In actual fact, the models
do not satisfy all the assumptions of these classic turbulence
arguments so that in section 5.1 we check the relations
between the Laplacian spatial estimated fluxes and those
estimated by second-order temporal differences. However,
we find that the ratio of the empirical spatial and temporal
exponents ηx/ηt is indeed close to unity.

It turns out that if we extend these arguments to
passive scalars (which can be used as simplified models of
temperature and humidity) we obtain similar conclusions
about the nature of the spatial versus temporal fluxes
estimated from fluctuations (see also Stolle et al. (2009)
for the more complex spatial scaling regime). Denoting
by ρ the density of the passive scalar, and χ = ∂ρ2/∂t
its variance flux, the dissipation range formula analogous
to Eq. (3) is χ ≈ ρκ∇2ρ (κ is the molecular diffusivity)
leading to �ρ ≈ (χ/κ)1/2�x, whereas the corresponding
dissipation range temporal formula is �ρ ≈ χ1/2�t1/2,
which as for velocity has the same χ1/2 behaviour (η = 1/2)
in both space and in time – the temporal relation also being
valid in the scaling regime (at least for Lagragian frames). For
non-Lagrangian frames we again have to use �x = Vtrans�t,
which yields η = 1/3.

2.3. The outer scales

A final practical consideration is that in the analyses, the
outer scale is not known a priori, but is an empirically
estimated parameter. It is therefore convenient to define a
reference scale to non-dimensionalize the fluxes. With this
convention, the basic prediction Eq. (1a) of multiplicative
cascades is that the normalized moments Mq = 〈ϕq

λ〉/〈ϕ1〉q

are expected to obey the generic multiscaling relation:

Mq =
(

λ

λeff

)K(q)

; λ = τref/τ ; λeff = τref/τeff , (7)

where ‘< . >‘ indicates statistical (ensemble) averaging, τ is
the temporal resolution of the flux and τref is taken as the
duration of the entire data set – or if space–time is quasi-
isotropic so that the effective space–time transformation
depends only on a ‘transformation’ velocity Vtrans that is
known (see section 5.2), we could use τref = Lref/Vtrans.
Finally, τeff is the effective outer temporal scale of the
cascade (see section 4.1 and Figure 7 for estimates). The

scale ratio λ/λeff is the overall ratio from the scale where the
cascade started to the resolution scale τ .

Before demonstrating this on the reanalysis and model
outputs, which have lower temporal resolutions and hence
very short scaling ranges, we would like to present convincing
evidence that the predictions of the cascade models are
indeed accurately followed by real meteorological fields.
Figure 3(a) shows the temporal analysis of hourly infrared
imagery from the MTSAT geostationary satellite. The flux
was estimated using the finite difference Laplacian at a
30 km spatial resolution and then degraded in time over
1440 images (about 2 months). From about an 1 h to about
2 days the evidence of converging straight lines (as predicted
in Eq. (7)) is quite convincing (the corresponding spectrum
starts to flatten at around 4 days), and it can be seen that
the lines converge at somewhat larger scales ( ≈ 48 days).
Similarly, Figure 3(b) shows the analysis of 29 yr of hourly
gridded rain-gauge data over the continental USA (details
in Lovejoy and Schertzer (2010)); as can be seen, the outer
scale is somewhat longer (42 days) but the deviations from
scaling become important after about 7 days; notice that as
expected, the intermitency is much higher for precipitation
(C1 ≈ 0.37 compared with ≈ 0.073 for the radiances in
Figure 3(a)). These figures demonstrate the challenge we
face with even lower temporal resolution data: the lifetime
of planetary scale structures may be ≈ 5–10 days but the
transition is not sharp so that the scaling of the moments
of the fluxes is affected on scales as short as 2 days. That
the outputs do indeed display cascade structures is shown in
Figure 3(c), which is a typical spatial analysis; deviations are
< 1% for scales < 5000 km.

Qualitatively, we can see that all the statistical moments
have the same type of behaviour as a function of resolution
λ = τref /τ . In particular, starting at the small scale (large
λ, far right) part of the graphs and moving to longer
time-scales, lower temporal resolutions (smaller λ, to the
left), we notice that the moments initially respect power
laws–at least approximately–emanating from a point. As q
increases, the estimates are dominated by a smaller set of
extreme values, eventually becoming spurious (‘multifractal
phase transitions’); the results for the larger q values were
therefore not given. This is the prediction of multiplicative
cascades in the time domain, Eqs. (1a and 7), the point
marks the effective outer scale at which the cascade starts
(λ = λeff ). At larger scales (typically greater than a week
or so, the statistics ‘flatten’ out; below we argue that this
corresponds to a transition from the weather to the low
frequency weather regime.

Before continuing, let us return briefly to the Orn-
stein–Uhlenbeck processes that we discussed earlier. This
will be a useful comparison point for our analyses. If we use
the method outlined here to analyse an OU process, treating
it as an unknown data field, the first step is to estimate the
flux by taking the absolute second differences. Since the OU
process is essentially a summed Gaussian white noise, this
‘flux’ will be a quasi-Gaussian process (essentially indepen-
dent of the transition frequency ω0) and by the central limit
theorem, as we degrade the fluxes in order to estimate the
moments at lower and lower resolutions, we expect rapid
convergence to a flat (K(q) = 0) regime. Finally, since the
flux is normalized by dividing by its ensemble average, the
overall result is a ‘universal’ set of moments valid for any
quasi-Gaussian process (at least with β < 4, the limit is a
consequence of the second differencing used to estimate the
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Temporal Cascade Structure of Reanalyses and Global Circulation Models

Table 1. Comparison of various model parameters. The time step is the model integration time step, the ‘grid speed’ is the ratio of finest model
resolution to the time step. The time interval, Ti, is the smallest �t used in the analyses, the ‘analysis speed’ is the ratio of the analysis spatial and temporal
resolutions. For GFS, ERA40 the analyses were at 6 h. The ‘typical transformation speed’, Vtrans, is the mean speed obtained from the space–time analyses

of section 5.2 for all datasets at 700 mb.

Parameters GEM GFS ERA 40

Time step (min) τst 22.5 7.5 30
Number of realizations in sample 505 1340 4384
Analysis time interval (h) τi 12 6, 24 6, 24
Assimilation cycle (h) 12 6 6
External time-scale of the data set τref 223 days 300 days 1000 days
Model spatial resolution, Lg 0.25◦ × 0.3◦ (0.47)◦ × (0.47)◦ (1.125)◦ × (1.125)◦

Grid Speed (m s−1), Vst = Li/τst 20.5 116. 69.
Number of vertical levels 28 64 60
Spatial resolution of analysis Li 0.6◦ × 0.6◦ 1◦ × 1◦ 1◦ × 1◦

Analysis speed (m s−1)Vi = Li/τi 0.77 1.3 1.3
Typical space–time transformation speed (700 mb) Vtrans 500 km day = 5.8 m s−1 450 km day = 5.2 m s−1 1000 km day = 11.6 m s−1

flux). In Figure 3(d), we show these ‘universal’ moments
up to order 2.9 obtained from 100 realizations of an OU
process 213 points long with ω0 = (128)−1 (grid points)−1.
As expected, the result was essentially identical to that of
a pure Gaussian white noise. The basic characteristics of
the graph that will be useful when comparing with the cor-
responding model output analyses are: (i) the maximum
log10M ≈ 0.46 (q = 2.9; the corresponding value for q =
2 is log10M ≈ 0.20); (ii) the outer scale is approximately a
factor of 10 larger than the inner scale; (iii) the curves start
to deviate significantly from the lines at scales larger than
about five grid points; (iv) at scales of a factor of 100 grid
points log10M is already < 0.01; (v) the best fit correspond-
ing universal multifractal parameters are C1 ≈ 0.082 and
α ≈ 1.79.

It might be thought that because the C1 values are
typically ‘small’, the multifractal cascade effects are also
small, however, this is not the case. For example, if C1

= 0.05 for the wind (roughly the value estimated from
aircraft, e.g. Lovejoy et al. (2010)), then for the energy
flux ε ≈ �v3/�x we have C1 = 0.05 × 3α ≈ 0.36 (using
α = 1.8) so that the dominant contribution to the mean
energy flux is from a fractal set with co-dimension 0.36.
Taking the dissipation scale as ≈ 1 mm and the outer scale
as 104 km, this implies λ = 1010, so that the set giving the
dominant contribution is of fraction λ−C1 ≈ 10−4, so that
99.99% of the field is too weak to significantly contribute.
Similarly, we can easily estimate that the variance (the q = 2
moment of ε) is determined by the extremes corresponding
to a fraction (probabilities) of 10−13; for quasi-Gaussian
processes this would be closer to 10−1. The point is that
the variability builds up scale by scale and a ‘low’ exponent
simply means that this happens ‘slowly’ with scale, yet the
resulting variability may be enormous!

3. The model products

3.1. The models

3.1.1. The Canadian Meteorological Centre Global Environ-
mental Multiscale model)

We chose two forecast models and one reanalysis, all recog-
nized as being state-of-the-art: the Canadian Meteorological
Centre (CMC) Global Environmental Multiscale (GEM),
the NOAA Global Forecast System (GFS) model and the

European Centre for Medium Range Weather Forecasting’s
(ECMWF) reanalysis (ERA40): see Table 1 for a summary of
model and dataset characteristics. For all three products we
analysed the three most dynamically significant fields: tem-
perature (T), east–west (u) wind fields and specific humidity
(hs; GEM, ERA40) and relative humidity (hr, GFS). For each,
we investigated the cascade structure as a function of altitude,
latitude and (for GEM, GFS) forecast horizon.

The GEM model is on a 0.25◦ × 0.3◦ horizontal grid
with 28 levels and our analysis used a 0.6◦ × 0.6◦ resolution
product (about 66 km resolution, the high-resolution GRIB
dataset (CMC, 2009a) at five pressure levels (1000, 850,
700, 500 and 200 mb). We used 505 realizations taken from
20 September 2007 to 2 June 2008, which are initialized
at either 1200 UTC or 0000 UTC, and analysed the initial
objective analyses and the 48 h forecasts. In order to
partially compensate for the smaller number of realizations
and smaller spatial scale, τi was taken as 12 h. A 4DVAR 6 h
assimilation is now used (CMC, 2009b). The model can be
adapted, see Côté et al. (1998a, 1998b) for more details.

3.1.2. The NOAA Global Forecast System model

Like the CMC GEM model, the GFS is a global NWP model,
which we analysed at its analysis (t = 0) and 48 h forecast (t
= 48 h). The GFS model uses T254 Spectral and 768 × 384
Gaussian grids on 64 vertical levels. The data are obtained
at a 1◦ × 1◦ resolution at five pressure levels (1000, 850,
700, 500 and 200 mb) every 6 h; each initialization starts
at 0000 UTC, 0600 UTC, 1200 UTC or 1800 UTC. The
data were taken from 1 August 2007 to 30 June 2008 (with
the exception of 700 mb u for which the first 61 days were
corrupted). A total of 1340 realizations were analysed.
When needed, due to the diurnal variation, fields were
averaged over four consecutive periods so that Ti = either 6
or 24 h. The assimilation system used is 3DVAR (Okamoto
and Derber, 2006) with an assimilation cycle of 6 h. For
more information, see Sela (1982, 1988) and NCEP (2003).

3.1.3. The European Centre for Medium Range Weather
Forecasting’s reanalysis product

A reanalysis combines a model forecast with observational
data using sophisticated data assimilation techniques, here
a 6 h 3DVAR assimilation cycle was used. The product
was made as uniform as possible over the 45 yr period
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(a)

(c)

(b)

(d)

(e)

Figure 3. (a) Analysis of MTSAT hourly resolution thermal infrared (IR) imagery over the Pacific. The temporal analysis is of the spatial Laplacian (at
30 km resolution) geostationary MSTAT thermal IR imagery over the Pacific for two months. The external scale is 48 days, the multifractal parameters
are C1 ≈ 0.073 and α ≈ 1.8. (From Lovejoy and Schertzer, 2012a.) (b) Twenty-nine years years of NOAA’s Climate Prediction Center (CPC) hourly
US gridded precipitation data, (the number of data points used in the figure are 21 × 13 × 254040 (east–west) × (north–south) × (time)). The
intermittency near the mean is characterized by C1 = 0.37 and the outerscale = 42 days. (Reproduced from Lovejoy and Schertzer, 2010.) (c)Spatial
analysis of the trace moments of the flux estimated from the spatial Laplacian of the GEM u field at 850 mb at time step 00 h for q = 0.0 to 2.8 in
increments of 0.2. (d) The ‘universal’ trace moments for quasi-Gaussian processes obtained from 100 realizations of an Ornstein–Uhlenbeck (OU)
process with ω0 = (128)−1 (grid points)−1 using 100 realizations of process 213 points long. This shows the moments up to order 2.9 at increments of
0.1 for an OU process, but the result is essentially identical to that of a pure Gaussian white noise (and to other quasi-Gaussian processes with β < 4).
The lines correspond to C1 = 0.082, α = 1.79 and an outer scale of ≈ 10 pixels. The thick black lines compare the log–log linear fit for moments q = 1.7
for quasi-Gaussian processes (bottom) and Levy processes (α = 1.8, top; moments for q > α are infinite). Even though the probability distribution is
extreme, the outer scale increases to only 20 grid points and the non-dimensional q = 1.7 moment at the smallest scales is only about 50% larger. In order
to obtain significantly stronger variability, strong long-range statistical dependencies are needed. (e) Schematic diagram of the space time-scales used
here. To make the time axis dimensionally commensurate with the spatial axis, it has been multiplied by the mean transformation velocity estimated in
section 5.2 (Vtrans, is denoted as V in the figure). The raw model resolutions are the time step Vτ st and the inner scale Li (to simplify, we ignore the
small difference between the inner analysis scale Li and raw grid scale Lst: see Table 1). Lref and τref are the reference scales; Lref = 20, 000 km and τref

varies from 223 days to 1000 days depending on the dataset. The vertical rectangles show the space–time averaging regions used to define the spatial flux
averages using ‘snapshots’, whereas the horizontal rectangles show the space–time averaging regions used in the temporal analysis. The scales respect
the inequalities l ≥ Li > Vτst (spatial analyses) and Vτ ≥ Vτ i > Li (temporal analyses) as long as the Vi < V < Vst (with Vi = Li/τi, Vst = Li/τst: see
Table 1). This figure is available in colour online at wileyonlinelibrary.com/journal/qj

from September 1957 to August 2002 despite the changing
observation network. The reanalyses were started every 6 h
for every day: 0000 UTC, 0600 UTC, 1200 UTC and 1800
UTC. Reanalyses are clearly dependent not only on the data
but also on the model being used for the assimilation, they
are hybrid products.

This dataset was chosen because the data quality
is relatively uniform over various multiyear periods.

Reanalyses are important tools in meteorological and
climatology research, and these data are easily compared
with the other datasets analysed in this paper (in particular
the analysis of each of the models). We analysed the most
recent 3 yr of the reanalysis: September 1999 to August 2002
with a total of 4380 time steps analysed at 1000, 850, 700,
500 and 200 mb. See Uppala et al. (2005) for more details.
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In the reanalysis the dynamic variables (i.e.
wind/vorticity/divergence, temperature, humidity) are cal-
culated on the T159 (triangular truncation up to wavenum-
ber 159) spherical harmonic grid, while the other variables
are on an N80 reduced Gaussian grid (80 latitudinal bands in
each hemisphere with the number of points varying from 18
near the poles to 320 around the equator) on 60 vertical lev-
els. The data were then interpolated onto a 1◦ × 1◦ constant
pressure level grid at the five pressure levels indicated above.
Only the dynamic variables temperature (T), east–west (u)
wind fields and specific humidity (hs) are analysed. For
the cascade analyses, data between 30◦N– 30◦S and 45◦N–
45◦S were used. Although this interpolation causes the finest
scales to be a little bit too smooth, problems such as aliasing
are avoided.

3.2. Discussion

In attempting to determine the cascade structure we must
consider the space–time resolution of the data – how
large a region (in space and time) does each analysis
element represent? Figure 3(e) shows the various scales
on a schematic space–time diagram; in order to make the
space and time axes commensurate, we have multiplied
the times by a large-scale mean transformation velocity
Vtrans (estimated in section 5.2 below); this is adequate
if the (horizontal) spatial and temporal exponents are
equal (space–time is only ‘trivially’ anisotropic) so that
the space–time relation is linear. This linearity is justified
below on empirical grounds; in Lovejoy et al. (2008) it is
given some theoretical justification (see also section 5). More
generally, space–time can be scaling but anisotropic so that
if the transformation is nonlinear (a power law), we need a
generalized velocity; here we discuss the simplest linear case
apparently relevant to the models.

Our analysis starts with the original raw model output
that is at space–time resolution Li× (Vtransτst). We then
estimate the turbulent fluxes either spatially by (absolute)
finite difference Laplacian or temporally by (absolute)
second-order time differences. In the spatial case, the flux
is a dissipation-scale estimate and will have space–time
resolution Li× (Vtransτi) with (see Table 1), Li > (Vtransτi),
in the temporal case; because the available data are at either
6 or 12 h intervals (τi >> τst, see Table 1) and τi is in
the scaling (not dissipation) range, we estimate temporal
scaling fluxes (see section 2) at resolution Li× (Vtransτi)
with (Vtransτi) > Li (see Figure 3(e)). In both cases, the
flux is estimated only by finite differences that involve
neighbouring pixels, so that the fine-resolution fluxes may
suffer from ‘finite size effects’, which become less and less
important as their resolutions are degraded by subsequent
spatial or temporal averaging. This presumably explains at
least some of the deviations from scaling at the smallest
space–time-scales. In addition, we have mentioned that the
assumption that τi is in the scaling range is not perfect
because the scaling will be perturbed by the assimilation
cycle (6 h) as well as to varying degrees by the diurnal
cycle. The latter effects can be minimized by first averaging
four consecutive 6 h or two consecutive 12 h fields before
the fluxes are estimated by differencing. However, this has
the unfortunate effect of losing a factor of four (or two)
in time-scales, which is quite a lot given that the temporal
cascade begins to break down at scales of 1.5–10 days (τdev).
In order to eliminate the effects of the diurnal cycle, we thus

subtracted the mean of the dataset for the given time of
the day.

Now consider the effect of degrading the resolution of the
fine-scale flux estimates. The flux at a space–time resolution
(l,τ ) is a space–time flux average over the corresponding
rectangles shown in the schematic. If l >> Vtransτ , then
the spatial resolution is dominant and the overall scale
ratio is λ = Lref/l. If on the contrary, Vtransτ >> l,
then the temporal averaging dominates and we obtain
λ = Lref /(Vtransτ ); if the two are comparable, either can
be used. From this, it is clear that the optimum is to choose
the inner analysis resolutions to be comparable so that
degrading purely in space or degrading purely in time gives
us information about respectively the spatial and temporal
structures. If – as suggested in the diagram – the temporal
analysis resolution τi is too large, then at first (l ≈ Li)
degrading in space will have little effect, it is only when
l >> Vtransτi that the effect of spatial averaging will be felt.

A final comment about the temporal analysis is to signal
the existence of a few missing fields for GEM. For the
spatial scaling behaviour, this omission had only a negligible
effect because each time step could be treated as a snapshot
over which the spatial analysis technique could be applied
independently. When determining the temporal behaviour,
the analysis technique sees these holes. Because there were
only a few missing time steps, it was decided that the missing
data would be filled in by interpolation.

4. The temporal analyses

4.1. Cascade analysis: forecast horizons, latitude and altitude
dependence

4.1.1. t = 0

Figures 4(a)–(f), 5(a)–(f), and 6(a)–(f) show the behaviour
of the fluxes estimated using the absolute second-order
difference at τ = 6 h (ERA40 and GFS) and 12 h (GEM).
Each figure shows the horizontal wind, temperature and
humidity moments (graphs top to bottom, (a)–(b), (c)–(d),
(e)–(f), respectively) and at two pressure levels (1000 and
700 mb, left and right respectively) and for the statistical
moments of order q = 0.1, 0.2, . . . , 2.9 (for q >≈ 0.5,
the slopes monotonically increase and for 0 < q < 1 they
are < 0, and for q > 1 they are > 0). We consider up to
q = 2.9 only because the behaviour of larger moments is
dominated by increasingly rare events and so the moments
become less reliable. Note that the fields at 1000 mb are
influenced by the generally higher quality data near the
ground, although this is somewhat offset by the interpolation
and extrapolation techniques needed when the topography
is significant (i.e. 1000 mb often corresponds to points
below ground). In addition, the diurnal cycle, which can
lead to poor flux estimates (see above), is much stronger at
1000 mb (especially for the temperature). As stated earlier,
we infer that there is a temporal cascade at smaller time-
scales, of which we see only the longest time-scale in our
analysis, because of the limited temporal resolution of the
spatial cascade behaviour demonstrated in the spatial trace
moments, as shown in Stolle et al. (2009). To compare
with OU processes, the q = 2.9 moment of an OU process
with ω0 = ωmax/64 for each dataset is superimposed on the
plots. As the flux is estimated by taking the absolute second
difference – as discussed earlier this curve is quite insensitive
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to this transition scale – it is essentially universal for all
quasi-Gaussian processes, at least those with small enough
spectral slope (i.e. β < 4, because the second differencing is
enough to flatten the spectrum of such processes).

The outer scale estimates for the various fields as functions
of pressure level are given in Figure 7 we see that they are
typically of the order of 10–20 days which is in fact of the
order of the lifetime of an atmospheric structure (see the
discussion below and Figure 7 for graphical results). We can
also define a smaller scale at which the trace moments begin
to deviate strongly from cascade behaviour. To quantify the
deviations from Eq. (7) and to make this distinction more
objective, we can define the deviations � from pure cascade
behaviour using the formula:

� = |log10(Mq) − K(q) log10(λ/λeff )| (8)

where the overbar represents averaging over all the moments
q ≤ 2 and over the scale ratios λ > λdev. If the range of
scales used to estimate � is increased from the smallest scale
(largest λ) to larger scales (smaller λ), we find that � starts
off being relatively stable (i.e. the deviations are of roughly
constant size) but at some point ≈ τdev it rapidly increases
when the flux moments begin to deviate systematically from
the scaling predictions of Eq. (8). Variable τdev can then be
somewhat objectively defined as the scale at which � is 1.5
times the minimum value that it had in the smaller scale
(cascade) region. Table 2 shows the variation of τdev for the
various fields; we see that it is in the range ≈ 2–10 days,
virtually independent of altitude (with the exception of
the GEM T1000 mb field). Table 3 shows the cascade fit
parameters for 1000 and 700 mb. Recalling that τeff is the
effective outer cascade time-scale, in between τeff and τdev,
the region is taken to be a transition region between weather
and low frequency weather (Figures 4–6).

Before discussing the results further we note that in a few
cases (especially the zonal wind) the variability is relatively
small, so that it is worth considering the hypothesis that the
data come from quasi-Gaussian processes, as discussed in
section 2.3. A straightforward way to see this is to compare
the trace moments (M) of the data with the ‘universal’ M for
quasi-Gaussian processes (Figure 3(d)). Rather than crowd
the figure with a direct superposition, we have indicated
by dashed lines the expected outer scale (10 grid points)
as well as the q = 2.9 maximum of log10M (= 0.46). To
further clarify this, the solid curved line shows the envelope
of the OU moments up to q = 2.9. We can see that while
the temperature and humidity fields are typically much
more variable than a quasi-Gaussian process, especially at
1000 mb, the zonal wind is only somewhat more variable,
therefore our conclusions are less strong with regard to the
horizontal wind than for the other fields. The variability of
the analysed fields becomes less at higher altitudes, meaning
also that our conclusions are less strong at higher altitudes

Table 2. Estimate of τdev for GFS, GEM and ERA40 (roughly the same
for all altitudes for each field); that is, scale at which � > 1.5 times the

minimum value.

τdev (days) h T u

GFS 1.0–1.5 1.25 1.25
GEM 1.5–3.0 2.5–10. 1.5–3.0
ERA40 1.5–2.5 1.5 1.5

than at 1000 mb. It is not obvious how to come to more
definite conclusions. For example, we may reproduce the
OU process by using a stable Levy variable with infinite
variance (i.e. α < 2) in the place of the Gaussian. For those
(finite) moments q < α it turns out that the trace moments
are not very strongly affected – for example a Levy OU
process with α = 1.8 yields an outer scale of 20 pixels (rather
than 10 for a Gaussian), and for q = 1.7 we have at a one
grid point scale log10M = 0.29 rather than log10M = 0.13 for
a Gaussian OU process. This indicates not only that strong
variability at the smallest scales is important, but also that
strong statistical independencies are necessary to produce
large moments and outer scales significantly larger than
10–20 grid points.

Considering the τeff estimates for the various fields, there
are few obvious trends (see Figure 7). The main ones are:
(i) the temperature tends to have a larger τeff than the
other fields; (ii) ERA40 had generally smaller τeff than the
other models; (iii) most of the estimates are on the order
of 10 days, as expected based on the solar energy flux input
and the horizontal scaling (see section 4.2); (iv) τeff for the
lowest two altitudes of temperature for ERA40, temperature
for the lowest altitude for GFS and the lowest altitude of
temperature for GEM are much larger than the others.

4.2. Differences in temporal cascade behaviour for 00 h and
48 h fields

Figure 8(a)–(f) shows the effect of model integration when
we compare analysis (t = 0) and 48 h forecast for the two
forecast models. We see that there is very little difference
between them. Apparently, the model integration has little
effect on the cascades. Since the 48 h forecast is less affected
by the initial data than the t = 0 fields, this gives some support
to the idea that the long term ‘climate’ of the model also
involves cascades possibly with very similar statistics. Before
continuing we should mention that the regional dependence
was also investigated by comparing the cascade structures
for data between ±30◦ and ±45◦. The differences in the
cascade parameters were mostly small. In more systematic
comparisons of this type (but on ECMWF interim reanalysis
products) it was found that the main effect was on the
outer time-scale, not the exponents, and that this variation
followed fairly closely that predicted using the mean energy
flux at the given latitude to predict the corresponding eddy
turn-over time; see Lovejoy and Schertzer (2011) for more
details.

4.3. Levy collapse and universality

We have been interested primarily in establishing the
fundamental prediction of multiplicative cascade models
Eq. (1a, 7). However, we also argued that there are basic
physical, mathematical reasons (essentially the existence
of a kind of multiplicative central limit theorem) that
make it plausible that the model fields fall into special
universality classes in which the basic scale invariant
exponent K(q) is given by Eq. (1b) characterized by just
two parameters C1 and α. In the analysis of spatial cascades
(Stolle et al., 2009) it was directly shown that universality
works well – at least up to a critical moment qc beyond
which there is a ‘multifractal phase transition’ where K(q)
becomes asymptotically linear (a sample-size-dependent
effect corresponding to the domination of the statistics
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Figure 4. (a)–(f) Temporal fluxes estimated from the second-order differences (6 h resolution) in time, temporal trace moments (q = 0.0 to 2.9 in
increments of 0.1) for ERA40 analysis between 30◦N and 30◦S. (a) u 1000 mb, τeff = 5.8 days, τdev = 1.5 days; (b) u 700 mb, τeff = 5.4 days, τdev = 1.5 days;
(c) T 1000 mb, τeff = 39.8 days, τdev = 1.5 days; (d) T 700 mb, τeff = 5.0 days, τdev = 1.5 days; (e) hs 1000 mb, τeff = 47.9 days, τdev = 2.5 days; (f) hs

700 mb, τeff = 9.2 days, τdev = 1.5 days. τref = 1000 days. Thick red reference curve is q = 2.9 moment of a Gaussian Ornstein–Uhlenbeck process
(maximum of log10M2.9 = 0.46, τeff = 2.5 days). This figure is available in colour online at wileyonlinelibrary.com/journal/qj

Table 3. Estimates for α, C1 and δ in GFS, GEM and ERA40 at 1000 and 700 mb (for use of δ see the caption of Figure 10). δ is the mean deviation over
all time-scales.

Parameter Dataset h T u

1000 700 1000 700 1000 700

α GFS 2.00 1.90 1.80 1.90 1.90 1.90
α GEM 1.95 1.70 1.85 2.00 1.90 1.95
α ERA40 2.00 1.75 1.90 1.90 1.90 1.90
C1 GFS 0.108 0.124 0.114 0.110 0.136 0.109
C1 GEM 0.091 0.097 0.080 0.101 0.121 0.116
C1 ERA40 0.092 0.118 0.094 0.102 0.098 0.098
δ (%) GFS 2.6 4.5 3.8 6.7 4.6 3.5
δ (%) GEM 4.5 2.0 3.6 5.9 5.7 3.9
δ (%) ERA40 3.6 2.2 3.5 5.6 4.7 3.4

by the largest flux values present (Schertzer et al., 1993)). If
the flux follows Eq. (1b) it implies that the generator of the
cascade (log flux) is a Levy variable, index α. In that case,
one can attempt to ‘collapse’ the moments Mq to a unique
curve by dividing log Mq by the theoretical K(q) for (say)
C1 = 1, i.e. by dividing it by (qα − q)/(α − 1); if Mq does
indeed follow Eqs. (1a) and (1b) with parameters C1 and
α, then we obtain logM’q = ((α − 1) (logMq))/((qα − q))
= C1logλ, which is independent of the moment q so that
all the curves with different q values ‘collapse’ onto a single
curve with a slope that is given by C1. The interest of

such plots goes beyond just testing for the universal cascade
behaviour: on a single plot we can independently evaluate
both the scaling (the straightness of the collapsed lines) as
well as the log-Levy nature of the generator – by the thinness
of the collection of lines, i.e. how well at a given scale the
different moments collapse, and how well they follow the
form (qα − q).

Before continuing we should mention that the stochastic
cascade model that generates the ‘weather’ regime up to
τw ≈ 10 days (see Figure 1) can be extended to much longer
time-scales, i.e. to scales where the space–time weather
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Figure 5. (a)–(f) Temporal flux estimated from absolute second-order differences in time (12 h resolution); trace moments (q = 0.0 to 2.9 in increments
of 0.1) for GEM analysis between 30◦N and 30◦S. (a) u 1000 mb, τeff = 24.2 days, τdev = 2.0 days; (b) u 700 mb, τeff = 10.2, days, τdev = 2.5 days; c) T
1000 mb, τeff = 2230 days, τdev = 10 days; d) T 700 mb, τeff = 9.6 days, τdev = 2.5 days; (e) hs 1000 mb, τeff = 32.6 days, τdev = 1.5 days; (f) hs 700 mb,
τeff = 13.4 days, τdev = 3.0 days. τref = 223 days. Thick red reference curve is q = 2.9 moment of a Gaussian Ornstein–Uhlenbeck process (maximum
of log10M2.9 = 0.46, τeff = 5 days). This figure is available in colour online at wileyonlinelibrary.com/journal/qj

cascade process has been reduced to an essentially purely
temporal process. As argued in Lovejoy and Schertzer
(2010), the collapse can be considered as a ‘dimensional
transition’ where the model energy flux ε can be written
as a product of high frequency space–time weather regime
flux εw(r,t) multiplied by a low frequency weather process
εlw(t) that is only a function of the time-scales longer
than τw. Theory shows that εlw(t) has, at long enough
scales, an asymptotically singular autocorrelation function
〈εlw(t)εlw(t − �t)〉 ≈ �t−1; the corresponding spectrum
has a low-frequency divergence. In practice this means
that the spectrum E(ω) for frequencies lower than τ−1

w
will have spectral exponent β that depends only on the
outer scale (and weakly on α), with realistic values in the
range β ≈ 0.2–0.4 (with E(ω) ≈ ω−β ; this reproduces the
observed low-frequency weather regime (see Lovejoy and
Schertzer, 2012b; Figure 1).

Further consequences of the dimensional transition are
that although the ‘bare’ low-frequency weather processεlw(t)
process (i.e. constructed down to a given scale and stopped)
has roughly log-Levy distributions, the empirically measured
‘dressed’ process (i.e. continued down to much smaller scales
and then averaged as in our data analysis) will eventually
have quasi-Gaussian statistics, therefore the Levy collapse
would not continue to time-scales much longer than τw.
However, as mentioned in the Introduction, this purely
atmospheric model does not take into account interactions
with the oceans, which apparently have similar turbulence

and transitions, only with τo at about ≈ 1 yr (as mentioned
in the Introduction εo ≈ 10−8 m2s−3, which is much
lower than εw ≈ 10−3 m2s−3). The interaction between
the ocean and the atmosphere may therefore provide the
extra correlations needed to allow the log-Levy distributions
to continue to longer time-scales of the order of one year.

With this theoretical motivation, let us turn to the
analyses. In Figure 9 we see that the collapse for the different
models and different fields is fairly convincing and this is out
to scales well into the ‘climatological’ regime; typically the
spread is 2–10% of the mean, comparable to that in space
(see Stolle et al., 2009), which we illustrate in Figure 10.
Interestingly, temperature has the largest variability (highest
curves) and humidity the lowest (except for the forecast
models (GEM, GFS) at 1000 mb where the most variable
field is the wind). Note that the largest deviations are at the
very smallest scales (largest λ) due to the ‘finite size’ effects
mentioned earlier, and at the very largest scales (smallest λ)
where the statistics are poor.

Also indicated for reference are the curves indicating the
envelope of the quasi-Gaussian processes (these all have
K(q) = 0, see section 2.2 and Figure 3(c)), this essentially
shows the rate of convergence of these non-intermittent
non-cascade processes to the theoretical K(q) = 0 slope (with
logM′

q = 0). As seen in many of the cases (especially T and
h), the empirical logM′

q curves are significantly above (i.e.
they are more variable than) the quasi-Gaussian reference
curves.
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(a) (b)

(c) (d)

(e) (f)

Figure 6. (a)–(f) Temporal flux estimated from the absolute second-order differences in time (6 h resolution); trace moments for GFS analysis between
30◦N and 30◦S. (a) u 1000 mb, τeff = 5.8 days, τdev = 1.25 days; (b) u 700 mb, τeff = 23.4 days, τdev = 1.25 days; (c) T 1000 mb, τeff = 141.2 days,
τdev = 1.25 days; (d) T 700 mb, τeff = 4.5 days, τeff = 1.25 days; (e) hr 1000 mb, τeff = 35.5 days, τdev = 1.25 days; (f) hr 700 mb, τeff = 13.5 days,
τdev = 1.25 days. τref = 300 days. Thick red reference curve is q = 2.9 moment of a Gaussian Ornstein–Uhlenbeck process (maximum of log10M2.9 = 0.46,
τeff = 2.5 days). This figure is available in colour online at wileyonlinelibrary.com/journal/qj

Figure 7. Estimates of τeff for GFS (green lines, square points), GEM (blue
lines, circular points), ERA40 (red lines, diamond points) for t = 00 h.
The lines indicate which points belong to the same dataset/field h (short
dashed lines), T (solid lines), u (long dashed lines). This figure is available
in colour online at wileyonlinelibrary.com/journal/qj

5. Comparing the spatial and temporal cascades

5.1. Spatial analyses using spatial and temporal flux
estimates

We noted in section 2 that turbulent fluxes could be
estimated by using either (horizontal) spatial Laplacians

(as in the analysis of Stolle et al. (2009)) or by second-
order differences in time (the discrete Laplacian analogue).
However, the fluxes estimated in space and in time are not
necessarily the same, notably because the spatial estimates
are at the (model) dissipation scale whereas the temporal
estimates are in the scaling regime (with the caveats about
the diurnal and assimilation cycles mentioned earlier). In
section 2 we argued that if the normalized spatial and
temporal fluxes are different powers of the underlying flux
(say ϕx = εηx/ < εηx >, ϕt = εηt /< εηt > in space and time
respectively), then if ε are also universal multifractals with
index α, then the ratio log< ϕ

q
x >/log< ϕ

q
t >= (ηx/ηt)α ;

i.e. they are in a constant ratio. In Figure 11 we rescaled the
ϕt moments by taking the optimum powers of the moments
of the temporal fluxes so that they optimally overlap the
ϕx moments. We see that there is generally good agreement
between the rescaled temporal fluxes and the spatial fluxes.
The fluxes estimated in the time domain assume that the
latter is in a scaling regime at the 6 h (or 12 h for GEM)
time-scale used for estimating the second-order differences.
However, the flux estimate may be poor due to the non-
scaling perturbations, such as the assimilation or the diurnal
cycle. The fact that generally the degree of overlap is very
high gives us confidence that the flux estimates are robust.
Indeed, we see that the main case of poor overlap is precisely
the 1000 mb T fluxes, which are particularly affected by the
diurnal cycle. In Table 4 we see that the ratio is close to unity
(with the exception of u at 1000 mb and GFS hr), with GEM
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Figure 8. (a)–(f) Temporal flux, temporal trace moments (q = 0.0 to 2.0 in steps of 0.1) for GEM (Tref = 223 days, 12 h resolution) and GFS (Tref

= 223 days, 6 h resolution) between 30◦N and 30◦S at t = 0 (solid red) and t = 48 h (dashed blue). (a) GEM u 1000 mb; (b) GFS u 1000 mb;
(c) GEM T 700 mb; (d) GFS T 700 mb; (e) GEM hs 700; (f) GFS hr 700 mb. Dotted green reference curve is q = 2.0 moment of a Gaussian
Ornstein–Uhlenbeck process (maximum of log10M2.0 = 0.20, τeff = 2.5 days (for GFS) and 5.0 days (for GEM)). This figure is available in colour online
at wileyonlinelibrary.com/journal/qj

Table 4. Ratio, log< ϕ
q
x > /log < ϕ

q
t >connecting the space and time

fluxes according to theory, this equals (ηx/ηt )α .

Dataset log < ϕ
q
x > /log < ϕ

q
t >

u T h

ERA40 1000 mb 1.6 1.1 1.0
ERA40 700 mb 1.4 1.4 1.0
GEM 1000 mb 0.7 1.1 0.8
GEM 700 mb 0.7 1.0 0.8
GFS 1000 mb 1.6 1.6 2.0
GFS 7000 mb 1.0 1.0 1.0

having slightly smaller values (∼0.7), GFS averaging to a
little above 1 between the different fields (although the ratio
for the 1000 mb hr field is about 2), and the average of the
values for ERA40 being slightly larger than 1. As α ≈ 1.8
for all the fields, for GEM this corresponds to ηx/ηt ≈ 0.85.
This is close enough to the value 1 that it is possible that all
the results are compatible with 1, with the small differences
due to some other cause. Recall that ηx = ηt = 1/2 (hence
ηx/ηt = 1) in the case of the energy flux estimated at the
dissipation scale in space and in the Lagrangian scaling
regime in time. Note that we use the 6 h fluxes as opposed
to the 1 day fluxes for GFS and ERA40 because it allows
for a larger range of analysis; this procedure is validated in
Figure 11.

5.2. Space–time diagrams

In order to systematically explore the space–time relations
we can compare the statistics of the flux moments as
functions of time-scale and as functions of space-scale;
it is important that we degrade the same flux in both
space and in time. The previous subsection showed that
both the spatial finite difference Laplacian or the second-
order temporal difference give essentially equivalent results
(related by a factor close to unity to go from one to the other
due to the different fluxes that are estimated). We therefore
chose to use the absolute second-order temporal differences
and estimate the space–time (‘Stommel’) diagrams for the
various fields using the following method. The basic idea is
that if for a spatial scale L and a temporal scale τ and for all
q, we have

〈εq
τref /τ

〉 = 〈εq
Lref /L〉. (9)

then the scales L and τ are implicitly equivalent in the sense
that their statistics are the same; for example, if Eq. (9) holds
for all q then at the level of random variables it implies:
ετref /τ

d
=εLref /L, where ‘ d

= ‘ means equality of probability
distributions.

If the horizontal scaling of the flux is the same as the
temporal scaling the same flux, then to determine the
relation between τ and L it suffices to superpose the spatial
and temporal Mq and adjust them left–right on the log–log
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(a) (b)

(c) (d)

(e) (f)

Figure 9. (a)–(f) Levy collapse (Log10M′
q = (α − 1)(Log10Mq)/(qα − q)) of temporal flux, of the temporal trace moments at t = 0 h (q = 0.1 to 2.0

excluding q = 1.0) for ERA40 (τref = 1 yr), GEM (τref = 223 days), and GFS (τref = 300 days, except u 700 mb, τref = 250 days) analysis between 30◦N
and 30◦S of u (red, darkest shade), T (green, lightest shade), hr or hs (blue, middle shade). (a) ERA40 1000 mb, (b) ERA40 700 mb, (c) GEM 1000 mb,
(d) GEM 700, (e) GFS 1000 mb and (f) GFS 700 mb. The collapse is visible by the bunching, overlap of the curves. For comparison we have also
indicated the envelope in black of logM′ for quasi-Gaussian processes (collapsed using α = 1.8), indicating their convergence to the theoretical logM′ =
0 asymptote for small λ. The values of α used are given in Table 3. This figure is available in colour online at wileyonlinelibrary.com/journal/qj

plot to find the optimum space–time ratio (i.e. velocity)
connecting them. If the scaling between space and time is
anisotropic, i.e. (τref/τ ) = (Lref/L)Ht with Ht �= 1, then the
space–time relation is nonlinear; see Radkevitch et al. (2008)
for a discussion and space–time analysis of lidar backscatter
data). Theoretically, there are two classic possibilities for
Ht : if we ignore advection, then for the horizontal wind
field dominated by the turbulent energy flux, ε, in space
the (Kolmogorov) scaling is �v ≈ ε1/3�x1/3, whereas the
corresponding (Lagrangian frame) formula in time is
�v ≈ ε1/2�t1/2. This leads to Ht = (1/2)/(1/3) = 2/3.
However, even if there is no imposed large-scale wind,
the (random) largest planetary scale eddies will advect all
the smaller scale eddies, and this would be up to the outer
scale of the scaling regime (here, planetary in extent). This
advection will lead to Ht = 1, with the overall advection
velocity being the large-scale turbulent velocity mentioned

earlier: V ≈ ε1/3L1/3
eff . This argument is an extension of one

first invoked by Tennekes (1975); see the discussion in
Lovejoy et al. (2008). Figure 12(a) shows a typical result
when the technique is applied to the hourly resolution
infraradiances (see Figure 1). We see that the space–time

relation is roughly linear up to 2 days in the north–south
direction and nearly 10 days in the east–west direction.

Once again, the difficulty with calculating space–time
diagrams for the model outputs is that the temporal
resolution is barely adequate. Figures 13(a)–(f) show the
results for 1000 mb and 700 mb for all of the datasets. In
addition, the single smallest scale point, corresponding to
6 h (or 12 h for GEM) in time (for which the fluxes are
not necessarily well estimated due to ‘finite size effects’), is
also a little too low. The space–time relation is not as linear
as in Figure 12(a) or as was found in the ECMWF interim
reanalyses in Lovejoy and Schertzer (2011), reproduced for
comparison in Figure 12(b). We seem to have deviations at
small �t due to finite size effects, a narrow scaling regime ( ≈
12 h to 2 days), and then the beginning of the low-frequency
weather regime. The reference lines in Figure 13 are plausible
given ‘finite size effects’ affecting the smallest time steps (6
and 12 h) and the small range of the temporal scaling.

A transition to the low-frequency weather regime is easily
seen on the space–time diagrams by the flattening of the
curves. Overall GEM shows a clearer transition at 1000 mb
than at 700 mb despite the noisier space–time diagram. In
addition, the corresponding advection velocities are around
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Figure 10. (a)–(f) The relative root mean square spread of the Levy collapse of Figure 9 (δ, the relative standard deviation of log10M′
q =

(α − 1)(log10Mq)/(qα − q) of temporal flux for q = 0.1 to 2.0 excluding q = 1.0) for ERA40 (τref = 1 yr), GEM (Tref = 223 days) and GFS (τref

= 300 days, except u700 mb, τref = 250 days) analysis between 30◦N and 30◦S of u (red, solid), T (green, short dashes), hr or hs (blue, long dashes).
(a) ERA40 1000 mb, (b) ERA40 700 mb, (c) GEM 1000 mb, (d) GEM 700, (e) GFS 1000 mb and (f) GFS 700 mb. The collapse corresponds to small
values of δ. The mean δ is given in Table 3. This figure is available in colour online at wileyonlinelibrary.com/journal/qj

500–1000 km day−1 for GFS and ERA40, which are close to
that found in the analysis of geostationary infrared satellite
imagery (Figure 12(a)) and close to those estimated from
the solar energy injection as discussed in section 4.2. The
GEM, on the other hand, has a characteristic velocity of
250 km day−1 at 1000 mb, which is somewhat smaller
though perhaps not inconsistent. With the exception of
the GFS 1000 mb and GEM 1000 mb fields, the wind,
humidity and temperature have very similar space–time
transformation velocities (Vtrans).

As seen in the space–time diagrams (ignoring the
exceptions in GFS 1000 mb and GEM 700 mb), they start
to level off at around 5000–10000 km corresponding to
≈ 10 days. This is about the size of the accurate temporal
scaling regime, τdev (1.5–6.0 days) – the scaling value where
the trace moments were found to deviate from cascade
behaviour. The difference between τdev and the value at
which the space–time diagrams flatten differ because both
the spatial and temporal trace moments tend to curve
at the largest scales, so that the space–time diagrams
could nevertheless have a linear part over a wider range
than the scaling in either space or in time. When the
space–time curves become flat, the low-frequency weather
regime begins.

6. Conclusions

Cascades and brute force numerical approaches to modelling
and understanding the atmosphere have coexisted ever since
Richardson in the 1920s. Today, the divorce between these
approaches is such that atmospheric scientists use only
rather vague cascade ideas based largely on dimensional
analysis coupled with strong assumptions about isotropy (in
either two or three dimensions), while turbulence scientists
focus on verifying the predictions of multiplicative cascades
in laboratory experiments, usually – unfortunately – with
similarly strong isotropy assumptions. However, due to
gravity, Coriolis and other forces and boundary conditions,
the atmosphere is anisotropic, yet it is nevertheless scaling
over wide ranges of scale. This conclusion has been
supported by satellite imagery, meteorological reanalyses
and in situ aircraft studies. In particular, the scaling of the
vertical stratification allows the atmosphere to have cascades
acting over huge ranges of scale.

In a recent paper (Stolle et al., 2009) we studied the
spatial cascade structure of the temperature, humidity and
horizontal wind for ERA40 reanalyses and for GFS and
GEM forecast models, and found that up to scales of about
5000 km for various altitudes, latitudes and forecast times,
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Figure 11. (a)–(f) The mean Levy collapse log10M′
q = (α − 1)(log10Mq)/(qα − q) of spatial scaling of the fluxes estimated from the spatial Laplacian flux

(red, darker shade) and temporal second-order difference flux (blue, lighter shade) spatial trace moments at t = 0 h (q = 0.1 to 2.0 excluding q = 1.0)
for ERA40 (Tref = 1 yr), GEM (Tref = 223 days) and GFS (Tref = 300 days, except u 700 mb, Tref = 250 days) analysis between 30◦N and 30◦S. The time
trace moment is multiplied by the factor (ηx/ηt )α given in Table 4. (a) ERA40 u 1000 mb; (b) ERA40 T 700 mb; (c) GEM u 1000 mb; (d) GEM hs 700;
(e) GFS u 1000 mb; (f) GFS h 700 m. The slopes are C1 = K(q)/(qα − q) of the spatial trace moments are the same as in Stolle et al. (2009), with α taken
from there. This figure is available in colour online at wileyonlinelibrary.com/journal/qj

(a) (b)

Figure 12. (a) The horizontal space–time diagram constructed by comparing the temporal MTSAT cascades (Figure 1) and north–south and east–west
analyses of the corresponding spatial moments. Over the scales where the data are linear, spatial and temporal statistics (for the q = 2 moment) are related
by a constant velocity of ≈ 900 km day−1. (From Lovejoy and Schertzer, 2010.) (b) Space–time plots for the ECMWF interim reanalysis for 700 mb
fields analysed for 2006 using the q = 2 moments and using λ = Tref /�t and λ = Lref /�x for time and space respectively (east–west and time). Yellow
= hs, green = T, cyan = u, blue = v, purple = w, red = z. The black reference line has a slope 1; it corresponds to a speed of ≈ 225 km day−1; the spread
in the lines indicates a variation over a factor of about 1.6 in speed. (Reproduced from Lovejoy and Schertzer, 2012b). This figure is available in colour
online at wileyonlinelibrary.com/journal/qj

the predictions of multiplicative cascade models are satisfied
to typically ±1% (for moments up to second order). In
this article we extend these analyses to the time domain.
A key difficulty of these analyses, when compared with
either the corresponding spatial analyses or with many
of the empirical analyses, is that the ratio of the outer
scale of the weather variability (τw corresponding, as we
argue, to the lifetime/‘eddy turn-over time’ of planetary
scale eddies) to the model resolutions (τi) is quite small
(e.g. ≈ (5 days)/(12 h) ≈ 10 or less) so that the scaling

itself is not so convincing, but also the accuracy of the
exponent estimates is not high. For example, although the
temporal cascades typically have effective outer scales τeff

of around 15 days, the scaling starts to worsen for scales
greater than τdev of ≈ 1.25–10 days. Indeed, to make the
existence of the temporal cascades more convincing we
showed two examples of temporal cascades from hourly
resolution data (infrared imagery and rain rates), and
also systematically compared our model moment analyses
with those from quasi-Gaussian processes (which included
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Figure 13. (a)–(f) Space–time (Stommel) diagrams based on q = 2.0 moments using absolute second temporal difference flux estimate at t = 0 h (q =
0.1 to 2.0 excluding q = 1.0) for ERA40 and GFS analysis between 30◦N and 30◦S of u (red, darkest shade), T (green, lightest shade), hr or hs (blue,
intermediate shade). The black line with slope Ht = 1 represents the magnitude of the ‘typical’ transformation velocity. (a) ERA40 1000 mb, Vtrans =
1000 km day−1; (b) ERA40 700 mb, Vtrans = 1000 km day−1; (c) GEM 1000 mb, Vtrans = 500 km day−1; (d) GEM 700 mb, Vtrans = 500 km day−1; (e) GFS
1000 mb, Vtrans = 450 km day−1; (f) GFS 700 mb, Vtrans = 450 km day−1. This figure is available in colour online at wileyonlinelibrary.com/journal/qj

Ornstein-Uhlenbeck processes that are essentially integrals
of Gaussian white noises and which are sometimes used
as models). The non-dimensional statistical moments of
quasi-Gaussian processes take roughly a factor of 10 in
time-scale to converge so that they are not necessarily easy
to distinguish from cascade processes analysed over small
ranges of scale. Nevertheless, especially for the temperature
and humidity fields, the variability of the model outputs was
significantly higher than for quasi-Gaussian processes, the
latter being unable to reproduce the observed variability.
These conclusions were supported by the analysis of ‘Levy
collapses’ of the temporal moments, which indicate that the
generators (logs) of the fluxes are of the predicted ‘universal’
Levy form even outside the scaling regime.

By comparing the spatial and temporal cascade structures
we can deduce statistical relations between space and
time, and therefore construct space–time diagrams. If
there is scaling in space and in time, then the resulting
space–time diagrams will be scaling. Unfortunately, because
the temporal scaling regime is narrow the scaling of the
space–time relations is poor (the corresponding ECMWF
interim relations are much more convincing in this regard),
although we obtain space–time transformation velocities in
the realistic range 250–1000 km days−1.

The close equivalence between deterministic models and
stochastic cascades opens up new avenues in atmospheric
science; this is particularly true since the goal of
weather modelling today is increasingly a stochastic one
with ensemble forecasting systems becoming the norm.

At the moment there is a growing need to obtain
stochastic descriptions of these deterministic systems, for
example, in choosing the ensemble initializations as in
the ad hoc methods of Corazza et al. (2003)) as well
as in ‘stochastic parametrization’ of the subgrid effects,
which are currently fairly ad hoc (Buizza et al., 1999;
Palmer, 2001). Direct exploitation of the known cascade
structures presumably would be of great immediate benefit.
However, looking further into the future, rather than
making cumbersome attempts to add randomness to a
fundamentally deterministic system, it may be preferable to
use the cascades as a basis of direct stochastic forecasting
in which information on the state of the weather at t =
0 is used to directly estimate the conditional probabilities
(or conditional expectations) of the weather over various
forecast horizons. Cascade-based pure stochastic approaches
would have the advantage of being able to (statistically)
account for huge ranges of scales as well as to be able to
make forecasts at any desired resolution.
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