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Abstract
Classical Energy Balance Equations (EBEs) are differential equations of inte-
ger order (h = 1), here we generalize this to fractional orders: the Fractional
EBE (FEBE, 0< h≤ 1). In the FEBE, when the Earth is perturbed by a forcing,
the temperature relaxes to equilibrium via a slow power-law process: h = 1 is
the exceptional (but standard) exponential case. Our FEBE derivation is phe-
nomenological, it complements derivations based on the classical continuum
mechanics heat equation (that imply h = 1/2 for the surface temperature) and
of the more general Fractional Heat Equation which allows for 0< h< 2. Unlike
some of the earlier “scale free” models based purely on scaling, the FEBE has
an extra blackbody radiation term that allows for energy balance. It there-
fore has two scaling regimes (not one), it has the advantage of being stable to
infinitesimal step-function perturbations and it has a finite Equilibrium Cli-
mate Sensitivity. We solve the FEBE using Green’s functions, whose high- and
low-frequency limits are power laws with a relaxation scale transition (several
years). When stochastically forced, the high-frequency parts of the internal vari-
ability are fractional Gaussian noises that can be used for monthly and seasonal
forecasts; when deterministically forced, the low-frequency response describes
the consequences of anthropogenic forcing, it has been used for climate projec-
tions. The FEBE introduces complex climate sensitivities that are convenient
for handling periodic (especially annual) forcing. The FEBE obeys Newton’s
law of cooling, but the heat flux crossing a surface nonetheless depends on the
fractional time derivative of the temperature. The FEBE’s ratio of transient to
equilibrium climate sensitivity is compatible with GCM estimates. A simple
ramp forcing model of the industrial-epoch warming combining determinis-
tic (external) with stochastic (internal) forcing is statistically validated against
centennial-scale temperature series.
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1 INTRODUCTION

The Earth is a heterogeneous system with a dynamically
evolving atmosphere, ocean and land surface, it has a huge
number of degrees of freedom. While general-circulation
models (GCMs) are routinely used to model its evolu-
tion, these are highly complex and each GCM has its own
climate, and these are different from the real-world cli-
mate. Simplified models have therefore been developed
that exploit what at first sight appears to be a fairly simple
yet fundamental constraint: the conservation of energy.

The corresponding Energy Balance Models (EBMs) are
based on the (near) energy balance of the Earth with the
Sun and outer space. For example, anthropogenic forc-
ings are currently around 2.4 W⋅m−2 above the long-term
mean solar forcing of ≈238 W⋅m−2 (both figures are for
global averages), so that the perturbations away from
balance are of the order of 1%. This makes it plausible
that the responses to external forcings are roughly lin-
ear. This was confirmed by examining the evolution of
the spatial patterns of 32 Coupled Model Intercompari-
son Project phase 5 (CMIP5) GCM responses when forced
by the various Representative Carbon Pathway (RCP)
scenarios (Hébert and Lovejoy, 2018). Even when these
included forcing as high as 8.5 W⋅m−2, 3.5% of the ref-
erence mean, the response (the regional distribution) of
each model – although different from the other mod-
els – was (nearly) a linear projection of its own past. The
extent of the linear regime is unclear, and it is certain
that due to albedo–temperature feedbacks and other non-
linearities, it will eventually break down. Consequently,
strongly nonlinear (chaotic) models have been proposed,
see Dijkstra (2013) for a review. These are based on Has-
selmann (1976)’s rather general and now classical math-
ematical decomposition of the dynamics into slow/fast
components where the fast (weather) scales stochastically
drive the slow (climate) component (see Section 4 below).

Two different linear EBM modelling approaches have
evolved, the earliest going back to Budyko (1969) and Sell-
ers (1969) who applied the continuum mechanics heat
equation. This yielded one-dimensional (1D) (longitudi-
nally averaged) models of the equilibrium surface tem-
perature’s latitudinal distribution, later extended to time
(Dwyers and Petersen, 1973). An attractive feature of the
Budyko–Sellers models is that the system can become non-
linear if the albedo (and hence forcing) is coupled with the
temperature (e.g. via the position of the snow line). This
has enabled it to be used for modelling past and (possible)
future climates.

A second EBM strand was inspired by “box models”
that related CO2 emissions to atmospheric concentra-
tions. In energy balance box models, one or more boxes
are used to model the regional or – more usually – the

globally averaged temperature. The simplest such
“zero-dimensional” box models were first proposed by
Hasselmann et al. (1993) and involve a single uniform slab
of material – the “box” – representing the Earth, and that
interacted radiatively with outer space according to New-
ton’s law of cooling (NLC). Although the Budyko–Sellers
and box approaches are distinct, when the time-dependent
versions are reduced to zero-dimensions and linearized,
they are mathematically equivalent to a (single) box model
(for a review, see North et al. (1981), the update North
et al. (2011), and the valuable monograph North and
Kim (2017)). In addition, a stochastically forced version of
the same relaxation equation (applicable not only to the
temperature) was proposed by Hasselmann (1976) based
on the weather–climate scale separation rather than on
energy considerations.

A key difficulty for all EBMs is that some of the
energy received from the Sun today is stored and emitted
to outer space only at a later time. If we consider mod-
els of the Earth averaged over (at least) macroweather
time-scales – that is, longer than the typical lifetime of
atmospheric (weather) structures (Lovejoy, 2013) – then
some of the long-wave/short-wave radiative flux imbal-
ances are stored in the subsurface (mostly in the oceans)
and some are transported horizontally. Conversely, energy
that was stored long ago – for example in the deep
ocean – may appear and contribute to today’s long-wave
emissions. The key to applying the energy balance prin-
ciple is therefore to have a realistic model of the storage
processes.

The box and Budyko–Sellers models handle the
storage problem in quite different ways. The original
Budyko–Sellers models had no storage at all, the flux
imbalance was simply redirected meridionally away from
the Equator. In the box models, the temperature (T) of
each box is spatially uniform and the energy stored (S)
is the product of temperature with the box heat capacity
(C) so that all the storage occurs as thermodynamic inter-
nal energy. Since the model corresponds to the state of
the atmosphere averaged over a month or longer and over
spatial scales containing many (energetic) meteorological
and oceanographic degrees of freedom, this seems unnec-
essarily restrictive. The model also unrealistically implies
that energy fluxes into and out of the box instantaneously
change the temperature of the entire box.

A recent series of papers showed how the realism of
these Budyko–Sellers models could be greatly improved
by introducing a vertical coordinate (Lovejoy 2021a, b,
hereafter L1, L2). Even though the aim is to improve
the modelling of the horizontal temperature distribution,
the inclusion of a vertical coordinate has two advantages.
First, it allows us to apply the correct conductive-radiative
surface boundary condition to determine the fraction
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of the radiative imbalance that is conducted into the
subsurface and the fraction that is re-emitted at long wave-
lengths. Second, since the subsurface stores the heat, the
third dimension simultaneously provides a precise stor-
age mechanism. When this conductive-radiative boundary
condition was applied to the classical 3D heat equation
(the Budyko–Sellers model with an extra vertical coordi-
nate), a surprising consequence was that the surface tem-
perature obeyed the long-memory, Half-ordered Energy
Balance Equation (HEBE: L1, L2). In the HEBE, the source
of the surface temperature long memory is completely
classical; it is simply a consequence of the slow diffusion
of heat into and out of the subsurface.

Even if we use the standard integer-ordered heat
equation, we are being forced to deal with fraction-
ally ordered surface temperature equations. But why
restrict ourselves to the classical heat equation? Indeed,
Budyko–Sellers-type models are for macroweather Earth
states, that is, they are averaged over a wide range of
(weather) degrees of freedom, they are “effective materi-
al” type models, there is no compelling reason that they
should be integer ordered. Indeed, it suffices to make a
modest extension to the classical heat equation to obtain
the Fractional Heat Equation (FHE), which is a fractional
diffusion equation that has been studied in the statistical
physics literature.

The conductive-radiative boundary condition applied
to the FHE implies that the surface temperature satisfies
the Fractional EBE or FEBE, generalizing the HEBE from
h = 1/2 to 0< h< 1. Like the HEBE, the FEBE is funda-
mentally a 2D macroweather temperature anomaly model,
whose zero-dimensional version is a fractional relaxation
equation, itself a fractional generalization of the classical
zero-dimensional box models that are the h = 1 special
cases. When the FEBE is driven by a Gaussian white noise,
the result is fractional Relaxation noise (fRn) that gener-
alizes the classical Ornstein–Uhlenbeck process, and its
high-frequency limit is a fractional Gaussian noise process
(fGn) that generalizes Gaussian white noise. The resulting
FEBE can be used advantageously for both macroweather
forecasts (the high-frequency FEBE approximation:
Lovejoy et al., 2015; del Rio Amador and Lovejoy, 2019)
and multidecadal projections (the low-frequency
approximation: Hebert, 2017; Lovejoy et al., 2017;
Hébert et al., 2021, and Procyk et al. (2020) for the
full FEBE).

This article focuses on models that combine the phys-
ical principles of energy balance and scaling. These are
distinct from both the classical models that use only
energy balance as well as from various proposals to model
the temperature using only the scaling principle. For
example, Van Hateren (2013) proposed a “fractal” model
as a scaling hierarchy of (energy balancing) box models

whereas Hebert (2017) and Hébert et al. (2021) proposed
a model whose approach to equilibrium was scaling,
essentially a low-frequency approximation to the FEBE
(see Section 3.3 below). This was achieved by truncating
the scaling at high rather than low frequencies.

While both of these scaling models respect energy
balance, and are stable to small perturbations, there are
several scaling models that are not. For example, Ryp-
dal (2012) proposed a model in which the temperature at
decadal and multicentennial scales responds in a “scale
free” (pure power-law) manner. This model is effectively
the FEBE but with only the fractional storage term.
Without the black-body emission term, energy balance
is impossible. While the author acknowledges that this
model is unstable to infinitesimal step forcings (it has an
infinite Equilibrium Climate Sensitivity, ECS), he argues
that unspecified “slow feedbacks” will eventually truncate
the scaling behaviour at very long time-scales. Similarly,
Rypdal and Rypdal (2014) argue that divergences will be
avoided because eventually the linear scaling model will
be “saturated by nonlinear effects” and break down (see
Hébert and Lovejoy (2015) for a critique). It is revealing
that when Rypdal et al. (2015) made a fractional general-
ization of North et al. (2011)’s heat diffusion model, that
it was obtained precisely by removing the critical energy
balance term.

The use of infinite ECS models has been also justi-
fied by the fact that over a limited range of scales, they
can be approximated by multi-box models that have finite
ECS (Fredriksen and Rypdal, 2017), so that they might
still be useful. Alternatively, since even infinite ECS mod-
els have finite responses after finite times, their Transient
Climate Responses (TCRs) will be finite, prompting Ryp-
dal and Rypdal (2014) to argue that the TCR may be a
more significant quantity than the ECS. In any event, an
unsatisfactory consequence of the absence of energy bal-
ance is that when pure scaling models are used for climate
projections, in order to avoid infinite temperatures, the
forcings must return to zero (Rypdal, 2016; Myrvoll-Nilsen
et al., 2020).

Since the FEBE has different high- and low-frequency
scaling regimes and the pure scaling model has only
one, the two models are theoretically and empirically dis-
tinct. For example, model differences are important at
poorly understood multicentennial/multimillennial scales
so that empirical clarification of the climate variability
over these scales is an important goal of the Climate Vari-
ability Across Scales (CVAS) Past Global Changes (PAGES)
working group (since 2015, Lovejoy (2017b), Hébert et al.
2020; for reviews, see Franzke et al. (2020) and Lovejoy
(2019a)).

Rather than deriving the FEBE from a
three-dimensional continuum heat model (following L1,
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L2), in this article it is instead derived phenomenologically
by arguing that the basic energy storage mechanisms
respect a scaling principle and we treat the consequences
of the FEBE for the Earth’s temperature. In Section 2 we
derive the zero-dimensional FEBE, and in Section 3 some
of its mathematical properties, consequences and solu-
tions. This includes the stochastic internal variability that
was examined from a more mathematical point of view
in Lovejoy (2019b), hereafter L3. In Section 4, we discuss
model parameter estimation/validation (high frequency,
low frequency, annual periodicity). We also propose a sim-
ple ramp and plateau model of the industrial epoch that
includes both stochastic internal forcing and deterministic
external forcing.

2 ENERGY STORAGE AND THE
CLASSICAL ENERGY BALANCE
EQUATION (EBE)

2.1 Multibox models and climate
response functions

A single box with its unique relaxation time is an inflex-
ible model. Hasselmann et al. (1993; 1997) already noted
that it was desirable to go beyond this to use the more
general linear response function framework. In this con-
text, the response functions are called “climate response
functions” (CRFs), and following Hasselmann et al. (1993)
we have a choice between the equivalent impulse and
step CRFs, the former being the derivative of the latter
(see below).

Unfortunately, without more assumptions or informa-
tion, the linear framework with (nearly) arbitrary CRFs is
unmanageably general. In order to make progress, Has-
selmann et al. (1997) proposed a response function con-
sisting of a CRF equal to the sum of N exponentials
corresponding to N boxes that mutually exchange heat,
each with its own exponential relaxation time and rela-
tive weight. But a “multibox” model with N boxes requires
2N parameters – it is still too general – so that out of the
practical necessity of fitting GCM outputs, Hasselmann
et al. (1997) ultimately chose N = 3. Following the more
usual procedure of deriving the impulse responses from
integer-ordered linear differential equations (where CRFs
are “Green’s functions”), Li and Jarvis (2009) recalled
that the Green’s functions of the nth-order differential
equations (with constant coefficients and with n an inte-
ger) can quite generally be reduced to sums of expo-
nentials. However, in the application part of their paper,
they nevertheless also used the value N = 3. Similarly,
Fredriksen and Rypdal (2017) argued that two boxes were

not enough and used a three-box model to approximate
a wider scale range (power-law) CRF over scales ranging
from roughly 1 to 1,000 years.

Even the N = 3 multibox model is difficult to manage
and most authors have settled for N = 1 or 2, including the
IPCC AR5 (2013, Section 8.SM.11.2) who recommend the
four-parameter N = 2 model. Yet problems remain; to be
taken seriously, the boxes and their time constants must
have physical interpretations. For example, the role of each
box is to store heat, but what do the boxes physically rep-
resent? Using the atmosphere implies relaxation times of
weeks, which is too short for most applications. For the
more popular two-box model, there is a rough consensus
that each represents part of the ocean: an upper “mixed
layer” and a lower “deep” layer. By appropriately choos-
ing the layer thicknesses, one can get relaxation times 𝜏

spanning years to millennia. For example, single-box mod-
els have 𝜏 ranging from 4 to 40 years (e.g. Schwartz, 2007;
2012; Held et al., 2010; Zeng and Geil, 2016). Two-box mod-
els typically have one box with 𝜏 in the range 2–10 years
and another with a 𝜏 in the range 20–800 years (Ryp-
dal, 2012; Geoffroy et al., 2013) with the IPCC AR5 favour-
ing τ = 8.4 and τ = 409.5 years.

2.2 Scaling storage

Rather than justifying a choice of CRF by invoking hypo-
thetical homogeneous boxes, one can instead derive the
CRF directly from numerical model outputs (e.g. Hansen
et al., 2011) or from physical considerations. The key
is to exploit the wide-range spatial scale invariance of
geo-processes such as the ocean and atmospheric dynam-
ics associated with energy storage (see e.g. Lovejoy and
Schertzer (2013) for a review). The idea is to use the fact
that from small to large spatial scales, there is a whole
scaling hierarchy of storage processes (e.g. atmospheric
or oceanic eddies). Since the heat transfer times of each
structure in the hierarchy depend on its spatial scale, it
is reasonable to assume that the collective overall heat
storage is also scaling.

As mentioned in the introduction, up until now the
scaling principle has not been applied to the storage,
but instead directly to the overall temperature response
(Rypdal, 2012; Van Hateren, 2013; Rypdal and Ryp-
dal, 2014; Hebert, 2017; Myrvoll-Nilsen et al., 2020; Hébert
et al., 2021). Scaling impulse (Dirac δ-function) response
CRFs are power laws:

G𝛿(t) ∝ tHF−1, (1)
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where HF is a scaling exponent. However, such pure
power-law CRFs suffer from the “runaway Green’s func-
tion effect” (Hébert and Lovejoy, 2015): the fact that they
imply nonphysical divergences either at low or at high
frequencies (depending on whether HF > 0 or< 0). This
can readily be seen by considering the physically impor-
tant integral of Gδ, the step response CRF: GΘ(t) ∝ tHF .
For example, Rypdal (2012) proposed a CRF with HF > 0
which implies that GΘ(t) diverges as t →∞; such CRFs
would yield infinite temperature responses to a doubling
in CO2: an infinite ECS. To avoid the divergence, forc-
ings must be carefully restricted so as to eventually return
to zero. If low-frequency truncations on a power law
with HF > 0 are invoked (Rypdal, 2012; Rypdal and Ryp-
dal, 2014), then the behaviour depends critically on the
details of the truncation.

To avoid divergences, Van Hateren (2013) instead
proposed a “fractal climate response” model that had
N = 6 boxes but used the scaling principle to link the
amplitudes and time constants by power laws yield-
ing a four-parameter model. As mentioned in Hébert
et al. (2021), his model featured unphysical logarithmic
oscillations and an unnecessary low-frequency cut-off.

Recently, Myrvoll-Nilsen et al. (2020) have applied the
original (Rypdal, 2012) infinite ECS model to twenty-first
century warming scenarios claiming that their model with
“not well-defined” ECS nevertheless “provides an accu-
rate description of both forced and unforced surface tem-
perature fluctuations”. Be that as it may, an additional
attempt to justify their model as “a cost of the reduction
of model complexity” cannot be sustained. For example,
Hebert (2017) and Hébert et al. (2021) proposed a scaling
CRF but instead took HF < 0 combined with an explicit
high-frequency cut-off to avoid divergences:

GΘ(t) = 1 −
(

1 + t
𝜏

)HF
; HF < 0, t ≥ 0. (2)

At long times t ≫𝜏, this step response CRF yields
a power-law approach to a constant (corresponding to
energy balance), and GΘ(0) = 0 so that there is no
divergence at t = 0 either. The truncated scaling model
(Equation (2)) or the FEBE (below) both show that it is
easy to avoid models with “not well-defined” ECS while
continuing to maintain model simplicity.

The fundamental cut-off scale 𝜏 was estimated
as 2 years from the empirical coupling time of fluc-
tuations in the ocean and atmosphere (Hebert, 2017;
Lovejoy et al., 2017). Using historical forcings and tem-
perature responses since 1880, they empirically estimated
the exponent HF (≈−0.5) as well as the climate sensi-
tivity parameter s = 2.4 K⋅per CO2 doubling (with 90%

confidence interval [1.8–3.7K]: Hébert et al., 2021). Using
the IPCC AR5 scenarios (the Representative Carbon Path-
ways, RCPs), the parameters were then used to make
temperature projections to 2100. Since the source of the
projection uncertainties were from the past data – not
the large GCM “structural uncertainties” – they showed
that the projections were compatible with – but much less
uncertain – than the CMIP5 alternatives.

In spite of its success in making climate projections,
due to their truncations, the scaling CRF models are only
approximations; they apply the scaling principle directly
to the CRF whereas in fact it should only be applied to the
storage term in the energy balance equation (EBE). It turns
out that this model change can be made with a surpris-
ingly small tweak to the usual EBE; it suffices to change
the order of differential equation from integer to fractional
order, the Fractional Energy Balance Equation (FEBE) dis-
cussed below. We will show that this seemingly trivial
generalization can account for responses to both externally
forced and internal variability, effectively explaining them
both as different aspects of energy conservation.

2.3 The Earth’s energy balance

The Earth’s energy balance can be expressed as:

S(t) + Etot,↑(t) = Etot,↓(t), (3)

where the upward arrow indicates energy emitted to outer
space and the downward arrow the energy received from
the Sun (and other sources external to the climate system);
the difference is the energy stored, S(t); the subscript “tot”
indicates the total over a long time, starting at a convenient
reference baseline.

Before continuing, it is worth making a few com-
ments:

1. This equation directly expresses conservation of energy;
it is not yet the more usual rate equation obtained by
taking derivatives (see below).

2. Equation (3) is “zero-dimensional”, that is, all the spa-
tial degrees of freedom are averaged out, S, Etot,↑, Etot,↓
are averages over the whole Earth: energies per unit
surface area (in standard units, J⋅m−2).

Now consider anomalies, that is, the deviations E↑, E↓

from the long-term values E0,↑, E0,↓:

Etot,↑(t) = E0,↑(t) + E↑(t)
Etot,↓(t) = E0,↓(t) + E↓(t). (4)
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The long-term radiances E0,↑, E0,↓ could be taken as
being proportional to long-term average rates, outgoing
and incoming radiances R0,↑, R0,↓ so that E0, ↑(t) = tR0,↑
E0,↓(t) = tR0,↓.

Since the Earth is nearly in radiative balance, R0,↑=
R0,↓ hence E0,↑ = E0,↓, so that the storage S(t) is the
difference between the long- and short-wave radiative
anomalies:

S(t) + E↑(t) = E↓(t) (5)

(subtract the two equations in (4) and use Equation (3)).
If the storage processes are scaling in space (i.e. hierar-

chical), and the characteristic storage time of each struc-
ture depends on its spatial extent in a power-law manner,
then it is reasonable to assume that the storage at a time t
depends on the past in a power-law manner:

Sh(t) =
Ch

Γ(1 − h)

t

∫
t0

T(u)
( t − u

𝜏

)−h du
𝜏
; 0 ≤ h ≤ 1, (6)

where Ch is the (generalized) heat capacity per unit area
of the Earth, which in standard units is [Ch] = J

km2 , h
is a fundamental scaling exponent and 𝜏 is the (power
law) relaxation time (see below). The power-law kernel in
Equation (6) relates the storage to the temperature via a
Riemann–Liouville fractional integral of order 1−h with
0≤ h≤ 1; G is the usual Gamma function. t0 is the refer-
ence time from which the total storage is measured (here,
taken to be in the distant past): SH(t0) = 0, later we will
take t0 = −∞. We have added the subscript h to empha-
size that except in the classical h = 1 case, Ch is not a usual
heat capacity.

The storage defined in Equation (6) is a generalization
of the standard “box model” storage to which it reduces
when h = 1. To see this, we integrate by parts and take
T(t0) = 0, this is equivalent to fixing the reference of our
anomalies:

Sh(t) =
Ch𝜏

h−1

Γ(2 − h)

t

∫
t0

T′(u)(t − u)1−hdu; 0 ≤ h ≤ 1. (7)

Taking h= 1, we now obtain the usual h= 1 box storage
result:

S1(t) = C1T(t); h = 1. (8)

A key difference between the h< 1 and h = 1 cases is
that only in the latter (box model) does the storage depend
instantaneously on the temperature.

3 THE FRACTIONAL ENERGY
BALANCE EQUATION

3.1 Fractional storage

The usual energy balance equation is an equation for the
rates, it is obtained by differentiation of Equation (5):

dSh(t)
dt

+ s−1T(t) = F(t); F(t) =
dE↓

dt
; s−1T(t) =

dE↑

dt
, (9)

where F is the rate of anomalous energy input – the usual
forcing (power per area), s is the climate sensitivity and
T the temperature anomaly with respect to the long-term
equilibrium temperature.

The sensitivity is the temperature rise per forcing; in
standard units, [s] = Kkm2

W
. When combined with the gen-

eralized heat capacity, it defines a time-scale:

𝜏 = sCh. (10)

Since this dimensional combination is unique, 𝜏 is the
characteristic time for the system to relax to equilibrium
when it is perturbed by a step-function forcing. However,
when h≠ 1, Ch does not correspond to the usual thermody-
namic specific heat where energy in a material is stored in
internal thermodynamic (molecular) degrees of freedom.
Our model is a macroweather model, that is, for the sys-
tem averaged (roughly) monthly or longer and in space
over tens or hundreds of kilometres. The energy can effec-
tively be stored in internal weather degrees of freedom, it
is really an average coefficient that expresses the collec-
tive heat transfer and storage characteristics of a hierarchy
of storage mechanisms. Rather than treating Ch as fun-
damental and then using Equation (10) to determine the
relaxation time, it is better to treat 𝜏 as fundamental and
Ch as a derived quantity, Ch = 𝜏/s, so that the storage can
be written:

Sh(t) =
𝜏h

sΓ(1 − h)

t

∫
t0

T(u)(t − u)−hdu; 0 ≤ h ≤ 1. (11)

In this model, beyond the dimensionless exponent h,
𝜏 is the fundamental physical quantity characterizing the
storage processes.

We now recall the Riemann–Liouville derivative of
order h that is defined as the ordinary derivative of the 1−h
order fractional integral:

t0 Dh
t T = d

dt
(t0 Dh−1

t T)
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= 1
Γ(1 − h)

d
dt

⎡⎢⎢⎣
t

∫
t0

(t − u)−hT(u)du
⎤⎥⎥⎦ 0 ≤ h ≤ 1

= 1
Γ(1 − h)

t

∫
t0

(t − u)−hT′(u)du, (12)

where the bottom equality follows by integrating by parts
and using T(t0) = 0, the reference temperature. Therefore,

dSh

dt
= 𝜏h

s t0 Dh
t T; 0 ≤ h ≤ 1. (13)

Putting this into Equation (9) and taking t0 → −∞ we
obtain:

𝜏h
−∞Dh

t T + T = sF. (14)

This is the fractional energy balance equation, FEBE.
The physical meaning of the fractional derivative is that
when the forcing changes, the change in temperature is
not instantaneous but rather depends on the entire past
history of temperature changes. At low frequencies, the
linear term dominates, it corresponds to the anomalous
blackbody radiation caused by the anomalous forcing. If F
is a step function, then the new equilibrium temperature
is sF. Without this term – the pure scaling model discussed
in the introduction (e.g. Rypdal, 2012) – the temperature
would diverge.

Starting with the continuum mechanics heat equation,
L1 derives this with the value h = 1/2; the full FEBE (with
0< h< 1) can be analogously derived from the fractional
heat equation, itself a generalization of the continuum
mechanics heat equation. The use of half-order deriva-
tives in heat problems has a long history going back to
at least Meyer (1960), Oldham and Spanier (1972; 1974)
and Oldham (1973), developed also by Babenko (1986),
Podlubny (1999) and Sierociuk et al. (2013; 2015). Interest-
ingly, Oldham (1973) derives an equation mathematically
identical to the h = 1/2 special case of the FEBE as a short
time approximation to electrolyte diffusion in a spherical
geometry, and Oldham and Spanier (1974) anticipates our
present application by noting that half-order derivatives
can be applied to “not one but an entire class of boundary
value problems… ”.

The t0 = −∞ limit is convenient when the forcing is
a stationary stochastic process (such as a white noise rep-
resenting the internal variability) since the temperature
response will then also be statistically stationary. Alterna-
tively, it is also convenient if the forcing is periodic with
mean zero. In the case of a deterministic forcing that starts
at a finite time (e.g. t = 0), we need only assume that
T(t) = 0, F(t) = 0 for t ≤ 0. Due to the infinite range of the

fractional derivative, the FEBE Equation (16) is a “Weyl”
fractional relaxation equation.

We derived the FEBE for temperatures and forcing that
were taken as anomalies with respect to a loosely defined
reference state. In fact, since the equation is linear, one
can simply add or subtract reference forcings and temper-
atures for convenience. The same is true for deterministic
and stochastic forcings whose solutions can be superposed
when needed (Section 4.5). If the temperature and forcing
are nonlinearly coupled (e.g. via the albedo), then this free-
dom can be used to derive a nonlinear FEBE that could be
used to model temperature/albedo feedbacks as well as the
effects of orbital forcings, glacial–interglacial transitions
and other low-frequency behaviours. In the future, specific
models and their stability may be investigated in this way.

3.2 Newton’s law of cooling
and thermal impedance

To understand the FEBE, we integrate both sides of
Equation (14) by order h and rewrite it in the form:

T(t) = −∞D−h
t (𝜏−h(sF − T))

= 1
Γ(h)

t

∫
−∞

(Teq(u) − T(u))
( t − u

𝜏

)h−1 du
𝜏
; Teq(t) = sF(t)

0 < h < 1; (15)

The temperature is thus the fractional integral of order
h of the difference between the temperature and the equi-
librium temperature Teq. If the forcing is constant at a
value F, then at long enough times, the temperature will
“relax” to the equilibrium value Teq = sF. When h≠ 1, this
occurs in a power-law way (due to the power-law weight(

t−u
𝜏

)h−1
term). In the special h= 1 case – the conventional

EBE – the relaxation is instead exponential.
If we interpret the forcing sF in terms of an effective

external equilibrium temperature Teq, then the FEBE sat-
isfies Newton’s law of cooling (NLC) that states that a
body’s rate of heat loss is directly proportional to the dif-
ference between its temperature and its environment. In
these horizontally homogeneous models, it is the heat flux
(energy rate / area = Qs) across the surface into the body
(Figure 1) that is important so that the NLC can be written:

Qs =
1
Z
(Teq − T), (16)

where Z is a transfer coefficient sometimes called the
“thermal impedance” (units: m2⋅K⋅W−1), its reciprocal Y is
the surface “thermal admittance”. Since Qs equals the rate
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F I G U R E 1 A schematic showing Newton’s law of cooling
(NLC) that relates the temperature difference across a surface to the
heat flux crossing the surface, Qs (into the surface). Teq is the fixed
outside temperature, heat will flow across the surface as long as the
surface temperature Ts ≠Teq. Z is the thermal impedance, equal
here to the climate sensitivity s. To apply the NLC, we need to relate
the heat flux to the surface temperature. The lower left shows the
consequence of applying heat equation with conductive-radiative
boundary conditions, the lower right shows the phenomenological
assumption made by box models. The arrows represent heat fluxes,
hence the factor s in the denominators. The system is assumed to be
horizontally homogeneous

of stored heat loss, we can rewrite Equation (9) as:

Qs =
dSh

dt
= 𝜏h

s t0 Dh
t T = 1

s
(Teq − T). (17)

By comparing this with Equation (16), we conclude (a)
that the FEBE satisfies the NLC, and (b) that the climate
sensitivity s is a thermal impedance.

Before proceeding, a word about the energy bal-
ance, radiative equilibrium, thermal equilibrium and
thermodynamic equilibrium. As long as we consider
a “zero-dimensional” model representing a completely
homogeneous Earth, energy balance is a state of radiative
equilibrium, itself a state of thermal equilibrium. Thermal
equilibrium is a necessary condition for thermodynamic
equilibrium, but is generally not identical since thermo-
dynamically irreversible processes generally occur. When
the (fractional) time derivative is zero, the Earth is thus
in a steady, energy balance state, equivalently in a state of
radiative or thermal equilibrium.

3.3 Solving the FEBE using Green’s
functions

Mathematically, when 0< h< 1 the FEBE is a “frac-
tional relaxation equation”; the extension to 1< h≤ 2 is
a “fractional oscillation equation”. In the initial value
problem, F(t) = 0 for t ≤ t0, the FEBE impulse Green’s

function – the impulse CRF – is given in terms of
Mittag–Leffler functions:

G𝛿(t) = G0,h(t) = 𝜏−1
( t
𝜏

)h−1
Eh,h

(
−
( t
𝜏

)h
)
;

t ≥ 0; 0 ≤ h ≤ 2
G0,h(t) = 0; t < 0; 0 ≤ h ≤ 2, (18)

where:

E𝛼,𝛽(z) =
∞∑

n=0

zn

Γ(𝛼n + 𝛽)
(19)

is the α, β order Mittag–Leffler function (these and most
of the following results are in the notation of Pod-
lubny (1999)). The condition G = 0 for t < 0 is needed
to respect causality. In the following this condition will
be understood for all the G functions. As can be seen
directly from the series expansion (Equation (19)), the
Mittag–Leffler functions are often called “generalized
exponentials”. In particular, the classical h = 1 box model
is recovered with help of the (exceptional) ordinary expo-
nential:

E1,1(z) = ez.

As usual, the Green’s function gives us the particu-
lar solution to the inhomogeneous equation for a Dirac
δ forcing. The full solution, including the solution to the
homogeneous equation, is:

T(t) = s

t

∫
t0

G0,h(t − u)F(u)du + T0Eh,1

(
−
( t − t0

𝜏

)h)
;

T0 = T(t0); t ≥ t0 (20)

(Cheng and Chu, 2011). Since Eh,1(0) = 1 we can confirm
that this satisfies the initial condition T(t0) = T0.

Just as integer-ordered linear differential equations
with constant coefficients can generally be solved with
exponentials, the analogous fractionally-ordered differen-
tial equations can generally be solved with generalized
exponentials. However, the latter are based on power laws
so that the usual exponentials correspond to the special
case where all the orders of derivatives are restricted to
integer values; power-law Green’s functions are thus more
general.

A convenient feature of Mittag–Leffler functions is that
they can be easily integrated by any positive order 𝜁 :

G𝜁,h(t) = 0D−𝜁
t (G0,h(t)) = 𝜏𝜁−1

( t
𝜏

)h−1+𝜁

Eh,h+𝜁

(
−
( t
𝜏

)h
)
; 𝜁 ≥ 0; 0 ≤ h ≤ 2 (21)
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(Podlubny, 1999). Since G0,h is the response to a Dirac
function forcing, with 𝜁 = 1 we obtain the response to
the first-order integral of the Dirac: the Heaviside (step
function) forcing. Similarly, using 𝜁 = 2 we obtain the
response to its integral, the “ramp” (=0 for t < 0, =t for
t ≥ 0, Section 4.5), using 𝜁 = 3 we have the response to a
parabolic forcing, etc.:

t0 D−n
t 𝛿(t) = tn−1

(n − 1)!
Θ(t); n ≥ 1; t0 ≤ 0, (22)

where n is an integer. Figure 2 shows the impulse, step
and ramp responses for various h’s. The log–log plot is par-
ticularly revealing since it shows directly that for h< 1,
there are two power-law limits and that for the h = 1 case,
we obtain the usual exponential CRF. Note for the step
response (middle graphs, and Figure 3), the approaches
to the asymptotic value 1 (left) corresponding to energy
balance can be extremely slow.

The physically important step-function response – the
step CRF – is thus obtained by taking 𝜁 = 1:

GΘ(t) = G1,h(t) =

t

∫
0

G0,h(t′)dt′ =
( t
𝜏

)h
Eh,h+1

(
−
( t
𝜏

)h
)
;

t ≥ 0; 0 ≤ h ≤ 2. (23)

The h = 1 (box model) yields:

G0,1(t) = 𝜏−1e−t∕𝜏 ; G1,1(t) = 1 − e−t∕𝜏 , (24)

where we have used E1,2(z) = ez−1
z

.
By integrating Equation (20) by parts, and using

G1(0) = 0, and the condition F(t0) = 0, we can express the
temperature response in terms of the step CRF rather than
the impulse CRF:

T(t) = s

t

∫
t0

G1,h(t − u)F′(u)du; F′(t) = dF
dt

(25)

(we have taken T(t0) = 0 for simplicity). Mathemati-
cally, the equivalence between Equations 20 and 25 arises
because δ(t) is the derivative of Θ(t), and G0,h(t) is the
derivative of G1, h(t). Expressing the solution in terms of
the step CRF rather than the impulse CRF is advantageous.
For example, G1, h(t) is dimensionless so that the sensitiv-
ity parameter s has the usual dimensions of degrees per
power per area. In addition, following Hansen et al. (2011)
and emphasized by Marshall et al. (2014; 2017), the step
CRF directly expresses temperature in terms of the results
of a CO2 doubling experiment.

3.4 Complex climate sensitivities
and the annual cycle

The essential FEBE behaviour can be understood by tak-
ing its Fourier transform (“F.T.”). Using −∞Dh

t
F.T.
↔ (i𝜔)h

(e.g. Podlubny, 1999) and taking sF(t) = δ(t) we obtain
the Fourier transform of the Green’s function G̃0,H(𝜔) and
solution T̃(𝜔):

((i𝜔𝜏)h + 1)G̃0,h(𝜔) = 1; G̃0,h(𝜔) = 1
1+(i𝜔𝜏)h

T̃(𝜔) = sG̃0,h(𝜔)F̃(𝜔) =
sF̃(𝜔)

1 + (i𝜔𝜏)h
(26)

where the tilde indicates Fourier transform with conjugate
variable 𝜔, the frequency. This shows that if the forc-
ing is purely sinusoidal F = Fsei𝜔t that the temperature
response is also sinusoidal with the same frequency but
different phase: T = Tsei𝜔t. Using the notion of thermal
impedance identified with the climate sensitivity, we can
follow engineering practice (useful for estimating diurnal
temperature – heating lags in buildings and structures)
and use complex thermal impedances, that is, complex
climate sensitivities s(ω):

Ts = s(𝜔)Fs; s(𝜔) = Z(𝜔) = s0

1 + (i𝜔𝜏)h
, (27)

where we have used the notation s0 = s(0) for the static
climate sensitivity (i.e. s0 = s in the previous notation). In
the context of the Earth’s energy balance, it is more useful
to think in terms of sensitivities than impedances so that
when convenient we use s(𝜔). We could mention that in
dynamical systems theory, the Fourier filter between the
forcing and the response (the impedance s(𝜔) = Z(𝜔)) is
also called the “susceptibility”, see for example Lucarini
et al. (2017) for applications to climate models.

Deterministic scale-dependent climate sensitivities
have been used in scaling contexts in order to account for
the temperature fluctuations and spectra at multicentenni-
al/multimillennial scales, for example, Rypdal (2012) pro-
posed frequency-dependent scaling sensitivities to account
for the solar cycle and Rypdal and Rypdal (2014) for
the temperature response to Gaussian white-noise inter-
nal variability. Anticipating possible nonlinear feedbacks
at these scales, Lovejoy and Schertzer (2012b) used
scale-dependent but stochastic sensitivities to account for
responses to stochastic (and scaling) external natural forc-
ings. In this framework, at multicentennial/ multimil-
lennial scales, the deterministic temperature response to
external forcing could be nonlinear while the statistics of
the corresponding fluctuations could still be linear.
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F I G U R E 2 The various response
functions linear–linear (left column) and
log–log (right) for h = 1/10 to 1 (exponential) in
steps of 1/10. The lines bounding the envelope
are h = 1/10 (dashed), h = 1 (thick). The middle
value (h = 1/2) is also thick. The top row shows
the Dirac (δ(t)) response functions (G0), the
middle row the step (Θ(t)) responses (G1), and
the bottom row, the ramp (tΘ(t)) responses (G2)

F I G U R E 3 The FEBE response to a step-function forcing
(G1 = GΘ shown in thick) for various values of h, using s = 1 with
the response for h = 0.1, 0.3, 0.5, 0.7, 0.9 (bottom to top). The thick
middle line is for h = 0.5, the value close to the empirical exponent;
the blue is for the box model value h = 1. The storage is the
difference between the response and the forcing; both are shown
with arrows for the case h = 0.5

Due to the low-frequency cut-off in Equation (27),
FEBE sensitivities are complex climate sensitivities but
with different high- and low-frequency scaling regimes.
Complex sensitivities are useful in understanding the
responses to periodic forcings, in particular when the forc-
ing is due to the annual cycle. Figures 4 and 5 compare
the phases and amplitudes of s(𝜔) as functions of the relax-
ation time τ (with 𝜔 = 2π rad⋅year-1) for various values of
h including the HEBE value (h = 1/2) and the EBE value
h = 1. From Figure 4, the thin horizontal lines show that
taking the empirical value of 𝜏 in the range 1–5 years, and

F I G U R E 4 The (negative) phase lag of the temperature with
respect to the forcing (the negative of the argument of s) lag in days
for h = 1/10, 3/10, 1/2, 7/10, 9/10 (black), 4/10 (dashed middle), 1
(dashed top) as a function of 𝜏 measured in years. The horizontal
lines are for 25 and 30 days, we see that the dashed h = 4/10 falls in
this range for between one and 5 years. This range of lags is close to
the typical extratropical lags found in Donohoe et al. (2020)

the approximate empirical value h≈ 0.4 (dashed), that the
lag (the phase of the sensitivity) is in the range 25–30 days,
which is in the observed range for the lag between the sum-
mer forcing maximum and maximum temperatures over
most land areas.

If the forcing was only due to conductive heat-
ing (rather than conductive-radiative forcing), then, as
pointed out in L1, one obtains the classical (π/4) lag (cor-
responding to h = 1/2, 𝜏 = ∞) obtained by Brunt (1932)
for the diurnal lag. This pure heating lag corresponds to
46 days and is already too long for most of the globe.
Indeed, from the detailed maps in Donohoe et al. (2020)
we estimate that in the extratropical regions, over land,
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F I G U R E 5 The modulus of the climate sensitivity as a
function of the relaxation time 𝜏 for h ranging from 1/10, 3/10, 5/10,
7/10, 9/10 (solid, top to bottom) and h = 4/10 (middle, dashed) and
h = 1 (bottom, dashed)

the summer temperature maximum is typically 30–40 days
after the solstice, but only 20–30 days after the maximum
forcing (insolation) and for ocean, 60–70 days after the sol-
stice but only 30–40 days after the maximum insolation.
Similarly, the h = 1 EBE lag is in the range 82 to 91 days
(for 𝜏 > 1 year), also much too long. While it is true that,
over the ocean, the lag is typically longer than over land,
this is probably because of the strong albedo periodicity
associated with seasonal ocean cloud cover (Stubenrauch
et al., 2006; Donohoe et al., 2020). This delays the sum-
mer solstice forcing maximum over the ocean, potentially
explaining the extra lag.

L1 tested out the implications of the HEBE (h = 1/2)
model using a latitudinally averaged model and param-
eters taken from North et al. (1981). The model uses a
second-order Legendre polynomial to take into account
the latitudinal variations and a sinusoidal annual cycle
with empirically fitted parameters. Since it only models
latitudinal variations, it effectively averages over land and
ocean. In work in progress, we use modern satellite data to
test the model at 2◦ spatial resolution. Future work will use
these new results coupled with modern higher-resolution
data of outgoing long-wave radiation to investigate this fur-
ther and obtain more accurate local climate sensitivities.

4 ESTIMATING h, 𝛕

4.1 The low-frequency response
and climate projections

The FEBE has distinct high- and low-frequency
behaviours that can be understood from the complex
climate sensitivity:

T̃(𝜔) = s(𝜔)F̃(𝜔) ≈
s0(i𝜔𝜏)−hF̃(𝜔); 𝜔 >> 𝜏−1

s0(1 − (i𝜔𝜏)h)F̃(𝜔); 𝜔 << 𝜏−1
,

where the approximations were obtained as usual by
expanding the denominator of Equation (27). In the
high-frequency limit, (i𝜔𝜏)−hF̃(𝜔) is the Fourier Trans-
form of the h-order fractional integral of F, therefore at
high frequencies the temperature integrates (smooths)
the forcing whereas at low frequencies, the lowest-order
term (unity) corresponds to a Dirac function (associated
with the equilibrium temperature) while the next order
(i𝜔𝜏)hF̃(𝜔) term corresponds to a fractional differentiation
of order h that determines the rate at which equilibrium
is approached.

Alternatively and equivalently, we can use small and
large t expansions of the Green’s functions (Equation (21)).
Let us first consider the large t asymptotic expansions:

G𝜁,h(t) = 𝜏𝜁−1
∞∑

n=0

(−1)n

Γ(𝜁 − nh)

( t
𝜏

)𝜁−1−nh
; 𝜁 ≥ 0 (29)

(Podlubny, 1999). The most important cases are for 𝜁 = 0,
1, 2, corresponding to impulse, step and ramp responses:

G0,h(t) = − 𝜏−1

Γ(−h)

( t
𝜏

)−1−h
+ 𝜏−1

Γ(−2h)

×
( t
𝜏

)−1−2h
− O

( t
𝜏

)−1−3h

G1,h(t) =
(

1 − 1
Γ(1 − h)

( t
𝜏

)−h
+ 1

Γ(1 − 2h)

( t
𝜏

)−2h
)

+ O(t−3h) t >> 𝜏; 0 < h < 2

G2,h(t) = t − 𝜏

Γ(2 − h)

( t
𝜏

)1−h
+ 𝜏

Γ(2 − 2h)

( t
𝜏

)1−2h

+ O(t1−3h). (30)

We have used Γ(0) = ∞ for 𝜁 = 0, note that G(−h)
< 0 for 0< h< 1. From these, we see that, as required for
the step response, G1,h(0) = 0 and G1,h(∞) = 1 so that at
large t, the FEBE implies a power-law relaxation to the new
equilibrium temperature.

From either the low-frequency Fourier approxi-
mation (Equation (28)) or the asymptotic expansion
(Equation (30)), we see that the low-frequency
response Tlow can be approximated by the first term:
Glow,h(t)≈G0,h(t):

Tlow,h(t) ≈ sGlow,h ∗ F; Glow,h(t) = − 𝜏−1

Γ(−h)

( t
𝜏

)−1−h
. (31)

Tlow is expected to be dominated by the forced response
to external forcings, appropriate for making multi-decadal
temperature projections from anthropogenic forcings (in
Equation (31), we assumed that the initial temperature
is zero, otherwise the extra term in Equation (20) can
be used). Comparing this with the Hébert et al. (2021)
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truncated scaling CRF (Equation (1)) we see that the FEBE
has identical low-frequency behaviour with:

h = −HF . (32)

Using the empirical value HF ≈−0.5 that Hébert
et al. (2021) obtained by (Bayesian) fitting the global
temperature series since 1880 to the IPCC CO2eq forc-
ing, we find h≈ 0.5. Similarly, Procyk et al. (2020) fitted
the FEBE (using the exact G0,h Green’s function with
the same centennial-scale climate forcing) to estimate
h = 0.38± 0.06. In the next section we consider the
high-frequency behaviour and use the internal variability
(assumed to be forced by a Gaussian white noise) that
gives the more precise estimate h≈ 0.42± 0.02 (del Rio
Amador and Lovejoy, 2019).

We have seen (Equation (15)) that 𝜏 quantifies the
rate that the temperature relaxes to equilibrium follow-
ing a perturbation. At the same time, according to the
above analysis, 𝜏 represents the transition time between
two power-law regimes (t/𝜏)h−1 to (t/𝜏)−h−1; using the
empirical value h≈ 0.4 this is a transition from (t/𝜏)−0.6

(t ≪𝜏) to (t/𝜏)−1.4 (t ≫𝜏) behaviour thus with a relatively
small change in the scaling. The exact FEBE solution
(Equation (20), Figure 2, right-hand column) confirms
that the transition is very slow – that is, it occurs over a
wide range of scales. This very slow transition makes 𝜏

difficult to accurately estimate from observations of the
temperature responses to forcings (see Appendix).

Based on the truncated power-law CRF (Equations 1
and 2), Hébert et al. (2021) used physical arguments to
determine 𝜏. At short enough time-scales, different parts
of the globe have temperature fluctuations that vary more
or less independently of each other; they are primarily
responses to “internal” forcings, small-scale storage mech-
anisms. At long enough scales, the variability is expected
to be primarily due to the responses from external forcings.
Hébert et al. (2021) argued that 𝜏 could be estimated from
the scale at which the whole global surface temperature
starts to fluctuate as a unit. In particular, the atmosphere
and ocean should have temperatures that fluctuate syn-
chronously; 𝜏 should be the atmosphere–ocean coupling
time-scale.

𝜏 was therefore estimated by considering the correla-
tions between fluctuations in the atmospheric temperature
averaged over land, and fluctuations in the sea-surface
temperature (SST) averaged over the oceans. At scales
of months, there is practically no correlation; the land
and ocean fluctuate nearly independently of each other.
However, at long time-scales, they are on the contrary
highly correlated; they fluctuate together. The transi-
tion between independence and dependence occurs over
a short interval: between about 6 months and 2 years.

Hébert et al. (2021) used this to infer that 𝜏 ≈ 2 years, a
value that gave reasonable climate projections through to
2100. This time-scale is essentially the same as the life-
time of planetary-scale ocean gyres: the ocean weather –
ocean macroweather transition scale (Lovejoy et al.,
2017).

More recently, Procyk et al. (2020) used a Bayesian
approach and the FEBE CRF to find the optimum param-
eters 𝜆, 𝜏, h constrained by the estimated historic CO2eq
forcings and the responses as estimated by five observa-
tional series of global average temperatures since 1880;
they obtain a very similar value 𝜏 ≈ 4.7 years (the 90% con-
fidence interval was 2.4–7.0 years). Since the FEBE is in
the same family as the EBE, as a Bayesian prior distribu-
tion for 𝜏, they used the Geoffroy et al. (2013) estimate of
4.1± 1.1 years for the box (h = 1) model based on a dozen
different GCM model outputs.

4.2 The high-frequency response:
Internal variability and macroweather
forecasts

In Section 4.1 we saw that if we take h = −HF , that
to leading order, the low-frequency FEBE and truncated
model impulse CRFs are both proportional to t−h−1, these
give reasonable approximations to the low frequencies.
But with the FEBE, we are no longer thinking in terms
of a small number of homogeneous boxes; rather the
FEBE is a phenomenological model of a hierarchy of
storage processes from large to small. It is therefore log-
ical to assume that the FEBE applies to both external
and internal forcings. Mathematically this implies that
both variabilities have the same Green’s function, open-
ing up the possibility of estimating climate parameters
directly from the internal variability. Basing himself on
the weather–macroweather scale separation and assum-
ing that the internal forcing from the weather regime was
a Gaussian white noise, Hasselmann (1976) proposed a
stochastic climate model that reduces to the stochastic
box-model (h = 1); in the zero-dimensional case, the latter
is therefore sometimes called the “Hasselmann equation”
(see Watkins et al. (2020) for a useful discussion, review as
well as various fractional extensions).

The idea of using the internal variability to infer
the response to external forcing goes back to at least
Leith (1975), who proposed that the Fluctuation Dissi-
pation Theorem (FDT) be used for this purpose. The
FDT says that the impulse response CRF of a nonlinear
dynamical system to (small) external forcings is equal to
the normalized covariance function. The FDT is attrac-
tive since – if it is valid – it is independent of specific
climate models. While the original FDT only applied
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at thermodynamic equilibrium, it has been extended
using linear response theory to nonequilibrium systems
(Kubo, 1966), although the extension remains controver-
sial (Gottwald et al., 2016); it is not at all obvious that the
climate system is close enough to equilibrium for the FDT
to apply. Nevertheless, starting with Leith, numerous such
attempts have been made (especially North et al. (1993),
Cionni et al. (2004) and Schwartz (2007), and recently Cox
et al. (2018)). As we show in a future publication, it turns
out that the FEBE does obey the FDT, but only in the
low-frequency regime where t ≫𝜏 where the scaling stor-
age term is small enough that the system is indeed close
to equilibrium and the asymptotic form Equation (44)
holds (in this limit the normalized correlation function
and Green’s function G0,h are equal). In contrast, the EBE
(h = 1) special case is exceptional: the FDT always holds,
and the temperature is an Ornstein–Uhlenbeck process
(North et al., 1993; Cox et al., 2018).

Although at high frequencies the FDT is not valid, if
there is information about the internal forcing, then the
FEBE can still be used to infer the CRF and hence the
system response to external forcing. For example, if we
make the usual assumption that the internal forcing is a
Gaussian white noise, then we can use the temperature
statistics to deduce the exponent h (see Table 1, discussed
here and in the next section). If the noise amplitude is
also known, we can deduce s (see Table 1, bottom row).
Before discussing the full stochastically forced case, in this
section we discuss the high-frequency stochastic response
dominated by scaling storage processes.

In order to investigate the high-frequency behaviour,
use the first term of the Green’s function expansion
(Equations 18–20) to obtain:

Thigh ≈ sGhigh ∗ F(t); Ghigh = 1
𝜏Γ(h)

(
t
𝜏

)h−1
; t << 𝜏.

(33)

This is the singular high-frequency FEBE limit
corresponding to a fractional integration of order h
(Equation (28)).

Since we associate the high-frequency behaviour pri-
marily with internal variability, let us consider the case
where its source f (t) is a white noise. Ignoring external
forcings so that Thigh is its stochastic response:

Thigh(t) ≈
s

𝜏hΓ(h)

t

∫
−∞

(t − u)h−1f (u)du. (34)

To ensure convergence, we assume that f (t) is a statis-
tically stationary process representing the “innovations”
with mean <f (t)> = 0 and we take T(−∞) = 0.

To understand this high-frequency behaviour, it is use-
ful to compare it with the definition of a fractional Gaus-
sian noise process (fGn):

gH(t) =
KH

Γ(H + 1∕2)

t

∫
−∞

(t − u)H−1∕2𝛾(u)du; −1 < H < 0;

KH =
(

𝜋

2 cos(𝜋H)Γ(−2 − 2H)

)1∕2

, (35)

where 𝛾(t) is a “δ-correlated” unit white-noise process, the
innovations satisfying ⟨𝛾(t)𝛾(t′)⟩ = 𝛿(t − t′) and <𝛾> = 0.
gH(t) is a generalized function – a “noise” – that is properly
defined over finite integrals (see e.g. Biagini et al. (2008),
who terms this “fractional white noise”; it is commonly
defined as a derivative of fractional Brownian motion,
see e.g. Kou and Xie (2004)). Often, fGn is defined in
terms of a Wiener process W with dW = 𝛾(t)dt. KH
is a standard normalization constant chosen for conve-
nience. The fGn process goes back to Mandelbrot and
Van Ness (1968) and Mandelbrot (1971) who used it
as a hydrology model (see also Molz et al. (1997) for
a review including hydrology applications). Explicit use
of fGn processes as macroweather temperature models
was proposed by Rypdal and Rypdal (2014) and Lovejoy
(2015).

Comparing Equations 34 and 35, we see that if f (t) is
a white noise (i.e. proportional to 𝛾(t)), and if we take:
H = h− 1/2, then the high-frequency temperature response
is an fGn process with exponent H. This result is easy to
understand since at high frequencies (Equation (28)), the
derivative term in the FEBE is dominant (i.e. −∞Dh

t T >>

T) and gH is indeed the solution of the resulting fractional
differential equation:

−∞DH+1∕2
t gH(t) = KH𝛾(t); − 1 < H < 0. (36)

The standard assumption about internal variability is
that it is forced by a Gaussian white noise. With this,
we can use this high-frequency behaviour to estimate h
from the empirical values of H. As mentioned above,
according to the global-scale Haar fluctuation analyses
(see e.g. Lovejoy et al., 2015; del Rio Amador and Love-
joy, 2019), H ≈−0.08± 0.02 so that h=H + 1/2≈ 0.4 which
is essentially the same as the Hébert et al. (2021) and Pro-
cyk et al. (2020) values estimated from the low-frequency
response to external forcings (Equation (31)). These are
also close to estimates of H in the range 0 to −0.3 for var-
ious ocean and land areas (Fredriksen and Rypdal, 2017)
and with corresponding spectral exponents estimated in
Lovejoy and Schertzer (2013).
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T A B L E 1 Above the thick horizontal line: dimensional formulae summarizing auto- and cross-correlation functions of the white-noise
forced FEBE; the autocorrelations are dimensionalized versions of those in L3

General 𝚫t ≪𝝉 𝚫t ≫𝝉 Range

Temperature Autocorrelation function:⟨T𝜏r
(t)T𝜏r

(t − Δt)⟩ = RTT,𝜏r
(Δt)

s2𝜎2
f𝜏r

K2
h

(
𝜏r
𝜏

)[
h(1 + 2h)

(
Δt
𝜏

)2h−1
+ …

]
; 𝜏r << Δt

RT,𝜏r
(0) = 𝜎2

T,𝜏r
=

s2𝜎2
f𝜏r

K2

(
𝜏r
𝜏

)2h
+ …

−𝜆2𝜎2
f ,𝜏r

(
𝜏r
𝜏

)
(Δt∕𝜏)−h−1

Γ(−h)
0< h< 1/2

s2𝜎2
f ,𝜏r

c2

(
𝜏r
𝜏

)[
1 − |Γ(1−2h)| sin(πh)

π
c2
(

Δt
𝜏

)2h−1
+ …

]
−𝜆2𝜎2

f ,𝜏r

(
𝜏r
𝜏

)
(Δt∕𝜏)−h−1

Γ(−h)

1∕2 < h < 1

1 < h < 3∕2

s2𝜎2
f ,𝜏r

c2

(
𝜏r
𝜏

)[
1 −

(
Δt
𝜏

)2 c2

2

∞∫
0

G′
0,h(u)

2du + …
]

−𝜆2𝜎2
f ,𝜏r

(
𝜏r
𝜏

)
(Δt∕𝜏)−h−1

Γ(−h)
3/2< h< 2

s2𝜎2
f ,𝜏r

2

(
𝜏r
𝜏

)
e−Δt∕𝜏 h = 1

Temperature-forcing cross-correlation
function:⟨T𝜏r

(t)f𝜏r
(t − Δt)⟩ = RTf,𝜏r

(Δt)

s𝜎2
f ,𝜏r

(
𝜏r
𝜏

)
G0,h

(
Δt
𝜏

)
; 𝜏r << 𝜏; 𝜏r << Δt 0<H < 2

RTf,𝜏r
(0) = ⟨T𝜏r

f𝜏r
⟩ = s𝜎2

f ,𝜏r
Γ(2+h)

(
𝜏r
𝜏

)h
; 𝜏r << 𝜏

𝜌Tf =
⟨T𝜏r f𝜏r ⟩
𝜎T,𝜏r 𝜎f ,𝜏r

= K
Γ(2+h)

Variance ratio of temperature versus
forcing: ⟨T2

𝜏r
⟩∕⟨f 2

𝜏r
⟩ s2K−2

(
𝜏r
𝜏

)2h
0< h< 1/2

s2c−2 𝜏r
𝜏

1/2< h< 2

Note: 𝜏 is the relaxation time, 𝜏r is the resolution. T𝜏r
(t) is a resolution 𝜏r fRn process, the special h = 1 (EBE) is the Ornstein–Uhlenbeck process; in the h = 1/2

(HEBE) special case, there are logarithmic corrections to RTT,𝜏r see appendix B of L3. To ensure small-scale convergence, all quantities are taken at resolution 𝜏r , so
that ⟨f 2

𝜏r
⟩ = 𝜎2∕𝜏r (for RTT,𝜏r, this is only important for h≤ 1/2, for RTf ,𝜏r, it is important for h< 1). Also shown (bottom row) is the temperature to the forcing variance

ratio. The numerical constant K is from Equation (35) with H = h−1/2 and c is from Equation (42). Note the exact value c2 = 2 for h = 1 and that G(−h)< 0 for
0< h< 1. When h = 1/2 there are small-scale logarithmic divergences.
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We could note that Cox et al. (2018) recently used an
analogous method of exploiting the internal variability
to estimate the ECS. However, they made the unrealistic
Ornstein–Uhlenbeck (h= 1) assumptions that the autocor-
relation was exponential and that the ratio of temperature
variance to forcing variance follows the (strongly biased)
h = 1 result (Table 1, bottom row).

fGn processes are power-law smoothed white noises
(Equation (35)), but when −1/2<H ≤ 0, (0< h≤ 1/2), the
smoothing is not enough to eliminate the small-scale
divergences (i.e. mathematically, they remain “noises”).
For this reason, finite-resolution fGn processes are defined
as the increments of fractional Brownian motions (fBm).
This is equivalent to defining the “𝜏r resolution fGn” by
averaging over a time interval 𝜏r:

gH,𝜏r (t) =
1
𝜏r

t

∫
t−𝜏r

gH(t′)dt′. (37)

Then, with the above choice of constant K we have:

⟨gH,𝜏r (t)
2⟩ = 𝜏r

2H ; − 1 < H < 0. (38)

If h< 1/2, then H = h− 1/2 < 0, implying a small-scale
divergence as the resolution 𝜏r is reduced; fGn processes
thus have strong resolution dependencies. An impor-
tant but regularly overlooked practical consequence of
such divergences is that in macroweather, this leads to
“space–time reduction factors” that multiplicatively bias
macroweather anomalies and are important for example in
accurately estimating the temperature of the Earth (Love-
joy, 2017a).

This is perhaps an opportune moment to comment on
the relation between h and the Hurst-inspired exponent H.
Although Hurst’s original exponent (Hurst, 1951) was for
the “rescaled range” of a process, at least for many statisti-
cally stationary processes (such as fGn), it was equal to the
scaling exponent of fluctuations of running sums. At first,
Mandelbrot and Van Ness (1968) considered Gaussian pro-
cesses that had average (absolute) fluctuations growing
with scale (ΔtH with H > 0): fractional Brownian motion
(fBm). If we define fluctuations using differences (incre-
ments) then the fBm fluctuation exponent H is directly
related to the order (H + 1/2) of the fractional integration
of a white noise.

Later, in the 1980’s, wavelets allowed fluctuations to be
defined much more generally than just as differences, so
that fluctuations with exponents H < 0 could be obtained.
For example, we can define the anomaly fluctuation at
scale Δt as the mean over the interval Δt of the pro-
cess with its long-term average removed – or with zero

ensemble average (Lovejoy and Schertzer, 2012a). In this
case, Equation (37) shows that for fGn withΔt = 𝜏r, that we
can obtain fluctuation exponents in the range −1<H < 0,
see Equation (38) (for fGn, the exponent of the average
absolute anomaly and RMS anomaly are equal).

Also in the 1980s, it was realized that scaling pro-
cesses in general, and atmospheric processes in particular,
are more generally multifractal so that they could not be
characterized by a single exponent. However, Schertzer
and Lovejoy (1987) showed that multifractal processes
could nevertheless also be characterized by fluctuation
exponents and used the Hurst-inspired symbol “H” for
this. Beyond sharing a fluctuation exponent H that could
take on any real value, both multifractal and Gaussian
processes could be generated by fractional integration:
for multifractals, by fractionally integrating a “conserva-
tive” multifractal cascade process by order H, while for
quasi-Gaussian processes by order H + 1/2 fractional inte-
gration of a Gaussian white noise (the extra 1/2 is needed
because the white noise itself has a fluctuation expo-
nent equal to−1/2).

In summary, if we use appropriate wavelets to define
the fluctuations and define H as a fluctuation exponent,
then it applies equally well to both quasi-Gaussian and
multifractal processes.

In the FEBE, the order h plays numerous roles includ-
ing several that relate it to an H. For example, at high
frequencies (when the storage term dominates), h is the
order of fractional integration needed to obtain T from the
forcing, so that when F is a Gaussian white noise, at high
frequencies H = h− 1/2. However, F can also be deter-
ministic in which case h characterizes the responses to
deterministic step forcings for short times (th), while for
long times, equilibrium is approached as t-h.

Before leaving the topic, two more comments are in
order. First, although the domain of the FEBE discussed
here – macroweather in time – has low intermittency
(it is not far from being quasi-Gaussian, we model it as
such), it is in fact the only dynamical atmospheric regime
where the multifractality is low. Yet in the spatial domain,
macroweather multifractality is on the contrary very high
(Lovejoy, 2018), so that for regional (space–time FEBE:
Lovejoy, 2021a; 2021b) multifractality is important. Sec-
ond, it is worth pointing out that there is also a large
mathematical literature on fBm and fGn processes that
characterize them parametrically. Adding primes to avoid
confusion, they discuss “H’ parameter fBm” and the “H’
parameter fGn” processes. For reference, for fBm, we have
H = H′ whereas for fGn, H = H′ − 1; the difference (unity)
is due to differencing/summing of order one needed to
obtain fGn from fBm (and vice versa).
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4.3 The stochastic FEBE, fractional
Relaxation motion (fRm), fractional
Relaxation noise (fRn)

In the previous section we considered the high-frequency
stochastic response, fGn, which is the solution of the
FEBE at high frequencies where the (fractional) storage
term dominates. We noted that since the FEBE is a lin-
ear equation, we could separately model the deterministic
and stochastic (internal) variability. In this section we give
more information about this pure stochastic case driven
by white noise innovations, and we briefly summarize and
expand upon some of the results in Lovejoy (2019b) (here-
after L3). We note that the stationary process generated by
the stochastic FEBE – fractional Relaxation noise (fRn) –
generalizes Ornstein–Uhlenbeck processes from h = 1 to
0< h< 2.

Whereas the deterministic fractional relaxation
equation has been well studied (see e.g. Miller and
Ross, 1993; Podlubny, 1999), the stochastic version has
enjoyed much less attention, although West et al. (2003)
reviews some applications of the Riemann–Liouville case
to nonstationary random walks. In contrast, the stochas-
tic infinite range (Weyl version, when t0 → −∞) leading
to stationary solutions has only recently been considered
(L3) including the optimum predictor problem (L3). Below
we discuss the main points and give the dimensional form
of the main statistical properties.

Although the stochastic fractional relaxation equation
has received little attention, a closely related equation, the
Fractional Langevin Equation (FLE), has received some-
what more study due to its applications in the physics of
random walks, and diffusion (Mainardi and Pironi, 1996;
Coffey et al., 2012). Whereas the highest-order term in the
fractional relaxation equation is fractional, in the FLE the
fractional term is of lowest order. Watkins et al. (2020) pro-
vides a useful review that compares and contrasts various
stochastic equations that appear in climate models and
points out the relationship between the FLE and the FEBE.

The physical problem that we wish to solve is the
noise-driven FEBE with noise amplitude 𝜎f and sensitiv-
ity s:

𝜏h
−∞Dh

t T + T = sf(t);f (t) = 𝜎𝛾f (t), (39)

with initial conditions T(−∞) = 0, 0≤ h≤ 1 and 𝛾(t) a unit
Gaussian white noise so that ⟨f 2⟩1∕2 = 𝜎f ; ⟨f ⟩ = 0 , 𝜎 is
the amplitude of the noise, Equation (39) is a fractional
Langevin equation (see L3). To understand the statistical
properties of the internal variability response, it suffices to
study the non-dimensional equation:

−∞Dh
t Uh + Uh = Nh𝛾(t), (40)

where for 0< h< 1/2, Nh = Kh is the normalization con-
stant in Equation (35) (for 1/2 < h< 2, see Equation (41) and
the nondimensional Uh(t) function is called a fractional
Relaxation noise (fRn) since it generalizes fGn (see L4). It
also generalizes the h = 1 Ornstein–Uhlenbeck process.

Using Uh and noting that 𝛾(t)
d
= 𝜏−1∕2𝛾

(
t
𝜏

)
, we can

obtain the solution to the dimensional Equation (39)
using:

T(t) =
s𝜎f

Nh𝜏1∕2 Uh

( t
𝜏

)
. (41)

“
d
=” means equality in a probability sense.

Since the fRn process is the solution of the frac-
tional relaxation equation with a stationary, Gaussian, zero
mean, white-noise forcing, it is also stationary, Gaussian
with zero mean. Its statistics are therefore fully character-
ized by its autocorrelation function. A complication in the
calculation is that when 0< h≤ 1/2, in the small t limit,
the fractional term of Equation (39) dominates so that we
obtain the fGn limit. The solution of Equation (40) is there-
fore – like 𝛾(t) – a generalized function; to obtain solutions
with finite variances, we must take averages over finite
resolutions 𝜏r.

The resulting τr resolution autocorrelation function at
lag Δt is:

Rh,𝜏r (Δt) = ⟨Uh,𝜏r (t)Uh,𝜏r (t − Δt)⟩
= N2

h

∞

∫
0

G0,h(Δt + u)G0,h(u)du;

Rh,𝜏r (0) = ⟨Uh,𝜏r (t)
2⟩ = 𝜏2h−1

r ; 0 < h < 1∕2
Rh,𝜏r (0) = 1; 1∕2 < h < 2
Nh = Kh; 0 < h < 1∕2

Nh = c; c−2 =

∞

∫
0

G0,h(u)2du; 1∕2 < h < 2

(42)

Note that when 0< h< 1/2, the equation for Rh,𝜏r (Δt)
is only valid for Δt ≥ 𝜏r, also recall the classical
Ornstein–Uhlenbeck process (h = 1) where G0,1(t) = e−t

and the autocorrelation is: R1(Δt) = e−Δt/2. The above
formulae were given for Δt > 0 but since G0h is causal,
G0h(t) = 0 for t ≤ 0, which implies Rh(Δt) = Rh(−Δt).
Table 1 gives the explicit dimensional formulae taken
from L3 for the temperature autocorrelation. Also given
in the Table are the corresponding formulae for the
temperature-forcing (f = 𝜎f γ) and temperature stor-
age cross-correlations (Ṡ = dSh∕dt = 𝜏h

−∞Dh
t T = sf − T).

Physically, the model is justified as long as the resolution
𝜏r is greater than the weather–macroweather transition
scale 𝜏w (≈10 days). 𝜏w is the inner (smallest) scale over
which the FEBE may expected to be valid. From this, we
can obtain the high-frequency fGn approximation (valid
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for Δt ≪ 1 corresponding to Δt ≪𝜏 in the dimensional
equation):

Rh,𝜏r (Δt) ≈ h(2h + 1)Δt2h−1; 𝜏r << Δt << 1; 0 < h <
1
2

(43)

(see Table 1 for 1/2 < h< 2). At low frequencies, for Δt ≫ 1,
we obtain:

Rh(Δt) = −
N2

h

Γ(−h)
Δt−1−h + O(Δt−1−2h) ∶

0 < h < 1
1 < h < 2

; Δt >> 1,

valid for all (non-negative) Δt, see L3 and Table 1 for
the dimensional expressions and note that G(−h)< 0 for
0< h< 1. This large Δt result is independent of the reso-
lution 𝜏r and the fact that it holds over a wider range of
h values (h = 1 is the exponential exception, see Table 1).
A technical point is that, although when 0< h< 1/2, the
high-frequency limit is the fGn with a huge memory due
to the slow Δt2h-1 fall-off in Rh(Δt) (Equation (43)), the cor-
responding fRn is effectively truncated with a memory of
the order of 𝜏 (see L3).

Table 1 summarizes the (dimensionalized) ver-
sions of these relations along with the corresponding
cross-correlation functions. Of particular note are param-
eter ranges where the resolution is important (0< h≤ 1/2
for RTT ,𝜏r and 0< h< 1 for the temperature – forcing
cross-correlation RTf ,𝜏r) as well as the exceptionally partic-
ularly rapid fall-off at large Δt for the temperature–storage
cross-correlation RTS,𝜏r. Other properties of solutions to
the stochastic Equation (40) are given in L3.

A final interesting property is the predictability of
fRn, also discussed in L3, since for times < 𝜏, fRn is
close to the long-memory fGn process, the two can both
be well predicted (for fGn, the skill – with infinite past
data – becomes perfect in the limit h→1/2 [H→0]); how-
ever, beyond the relaxation time 𝜏, fRn cannot be well
predicted, it approaches a white noise.

4.4 ECS and TCR

In order to make accurate climate projections through-
out the twenty-first century, the single most important
parameter is the climate sensitivity s since for any given
forcing, this determines the ultimate (long-time) temper-
ature change. It is conventional to express s in terms of
the change in temperature following a CO2 doubling, this
s is the “Equilibrium Climate Sensitivity” (ECS). This is
effectively a change in units and can be effected using

the canonical value 3.71 W⋅m−2 for a CO2 doubling. How-
ever, in order to make accurate projections through the
twenty-first century, it is also important to have accu-
rate estimates of the memory, the “warming in the pipe”
(Hansen et al., 2011). The standard way of quantifying
this is by comparing the ECS to the Transient Climate
Response (TCR) that is defined as the temperature change
following a CO2 doubling with forcing linearly increasing
over 70 years; since the CO2 forcing is logarithmic in the
CO2 concentration, this is nearly exactly a 1% increase per
year. The smaller the TCR/ECS ratio, the larger the mem-
ory. Note that in the following, we only consider static
climate sensitivities that we indicate by s (not s0).

The dimensionless ratio TCR/ECS is independent of
s; for the FEBE model, it is only a function of τ, h, and
theoretically – since the TCR is defined in terms of a
“ramp” – the ratio is:

TCR∕ECS = G2,h(Δt)∕Δt = 1 − 1
Γ(2 − h)

(Δt
𝜏

)−h

+ 1
Γ(2 − 2h)

(Δt
𝜏

)−2h
+ … ; Δt >> 𝜏, (45)

where Δt is the period over which the doubling occurs
(conventionally 70 years).

Figure 6 shows a contour plot of the ratio as a function
of exponent h and relaxation times 𝜏. The FEBE parame-
ters (black circle) estimated from the historical data and
IPCC AR5 forcing by Procyk et al. (2020) with 90% confi-
dence intervals are shown (dashed rectangle). One can see
that the ratio is in the range ≈0.65–0.75 with mean≈0.7.
One can also see that the single-box (h = 1) model has
ratios near 1 unless the relaxation time is 20 years or longer
(Δt/𝜏 <≈3.5).

As h approaches zero, we see that the transition from
the ramp response to the equilibrium response takes a
longer and longer time. In the limit h→ 0+; the ratio
TCR/ECS = 1/2, an exact result as can be easily seen by
using limh→0+Dh = 1 in the FEBE (Equation (14)).

The h = 1 (exponential) case has too short a mem-
ory to be realistic so that most GCM outputs have been
fitted to double exponential (2-box) models; for example,
the IPCC AR5 suggests box relaxation times of 8.5 and
409.5 years with TCR/ECS = 0.58. Similarly, the IPCC
AR5 (chapter 9, see also Yoshimori et al., 2016), obtained
TCR/ECS = 0.56± 0.19 (90% confidence limits) from
23 CMIP5 GCMs. Figure 7 shows these model-based
estimates compared to the FEBE estimates. We can
see that the two are compatible although the FEBE
data-based estimate has a much smaller uncertainty than
the model-based one.
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F I G U R E 6 A contour plot of TCR/ECS for various h values
as well as the dimensionless ratio of the ramp time Δt to the
relaxation time 𝜏; the canonical value of Δt is 70 years. The dashed
lines show the 90% confidence intervals from the analysis in Procyk
et al. (2020) for both 𝜏 and h; (using Δt = 70 years) the black circle
represents the median values

F I G U R E 7 The TCR/ECS ratio for the FEBE model as a
function of h for various relaxation times using the canonical ramp
time constant Δt = 70 years with relaxation time 𝜏. The black circle
and rectangle shows the mean and 90% confidence interval values
found by Procyk et al. (2020). The horizontal dashed lines show the
90% confidence limits (IPCC AR5, chapter 9) found using CMIP5
GCMs

4.5 Modelling the internal
and externally forced variability: A simple
FEBE model from 1825–2100

We have seen that with a single exponent h, the FEBE
correctly predicts both high- and low-frequency scaling
regimes, allows it to convincingly model the internally
and externally forced variability; the two are linked by
the Earth’s multiscale (and scaling) storage mechanisms.
Let us therefore treat the total forcing ℑ(t) as the sum

of deterministic part F(t) and a stochastic part f (t) with
<f (t)> = 0:

ℑ(t) = F(t) + f (t), (46)

and similarly for the temperature response:

T(t) = Te(t) + Ti(t), (47)

where the subscripts “e” and “i” are for externally forced
and internal respectively. We propose thatℑ(t) satisfies the
stochastic FEBE:

𝜏H
−∞DH

t T + T = sℑ. (48)

If we identify the deterministic part with the externally
forced response and the stochastic part with the internal
variability, then the linearity of the FEBE implies that each
satisfies the FEBE separately. First, take ensemble averages
and use <f (t)> = <Ti(t)>= 0:

𝜏h(−∞Dh
t Te) + Te = sF(t); F = ⟨ℑ⟩; Te = ⟨T⟩ (49)

(sinceTi(−∞) = 0). Now, subtract this from Equation (48)
to yield:

𝜏h(−∞Dh
t Ti) + Ti = sf(t). (50)

Therefore, in the stochastic FEBE, the externally forced
and internal variability both simply represent sources or
sinks of heat energy that are external to the radiating sur-
face layer. Whether heat comes from internal storage or
from outside the system, all that matters is that it appears
at the surface where it can participate in the radiative part
of the energy balance.

To illustrate how the FEBE models both the deter-
ministic external and stochastic internal variabilities, let
us make a simple model that includes them both (see
Figures 8 and 9 and details in Appendix). The model
has a resolution of the weather–macroweather transi-
tion scale (taken as 10 days) and it solves the FEBE over
100,000 days starting in the year 1825, up to the year 2100.
The deterministic part of the forcing is taken to be zero up
until 1880; this is followed by a linearly increasing forc-
ing – a “ramp” – up until the year 2020 (≈51,100 days)
after which the forcing remains constant at that value
until the year 2100. The stochastic part of the forcing is
due to a Gaussian white noise whose amplitude is such
that the RMS monthly anomaly is ±0.14 K (as observed,
e.g. Lovejoy, 2017a). The forcing was adjusted so that the
forced response was 1 K in 2020 (close to the observed
anthropogenic warming); according to this model, there
is another 0.24 K of warming “in the pipe”. More details
including a scale-by-scale statistical analysis and compar-
ison with statistical analyses of global temperature series
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F I G U R E 8 The
non-dimensional temperature T/T∞

response (thin lines) for
non-dimensional forcing F/F∞ (thick
line) with unit sensitivity (s = 1). Each
graph shows the results for h = 0
(bottom) to h = 1 (top, exponential), at
intervals of 0.1; the thick middle curve
highlights the most realistic value
h = 0.4. The plots are shown for the
relaxation time 𝜏 = 102, 103, 104 days
(upper left to bottom as indicated). The
resolution of the calculations was
taken to be the weather–macroweather
transition scale (𝜏w = 10 days), but this
is only important for the stochastic
internal variability; smooth
deterministic forcings such as those
here are insensitive to 𝜏w as long as it
is much smaller than 𝜏

F I G U R E 9 Thin black line: a simulation of the
monthly-resolution temperatures with resolution 𝜏w = 10 days, the
sum of the externally forced model with h = 0.4, 𝜏 = 1,000 days
(Figure 8, upper right) with the Gaussian white-noise driven
stochastic internal variability model averaged over a factor of three
to simulate a monthly resolution series. The amplitude of the
internal variability was chosen to match observations of the
monthly-resolution standard deviation of global temperatures⟨T𝜏w

(t)2⟩1∕2 = 0.14 C. Thick black line: at annual resolution
obtained by averaging the previous over an additional factor of 12

are given in the Appendix. In place of this “toy model”, Pro-
cyk et al. (2020) uses IPCC AR5 forcings and makes quite
realistic hind-projections (1880–present) and projections
(through to 2100) that are within the uncertainty limits of
the IPCC AR5 (CMIP5) GCMs.

5 CONCLUSIONS

Beyond the deterministic forecasting limit of about
10 days, GCMs are effectively stochastic. In addition,
at least with the external forcing scenarios used in the
IPCC AR5 – the Representative Carbon Pathways – each
GCM response to external forcings is quite linear (Hébert
and Lovejoy, 2018); to a good approximation, climate
projections over the next century appear to be a linear
stochastic problem (Hebert, 2017; Procyk et al., 2020;
Hébert et al., 2021). In addition, stochastic, linear monthly,
seasonal and interannual scale (macroweather) tem-
perature forecasts have skill comparable to – or better
than – those of GCMs (Lovejoy et al., 2015; del Rio Amador
and Lovejoy, 2019).

These facts – and the urgency of reducing forecast
and (especially) projection uncertainties – militates for
the rapid development of stochastic macroweather mod-
els constructed directly at macroweather scales. Up until
now, such models have been based on the long memory of
the Earth’s atmosphere and climate that was exploited by
using the scaling principle: the fact that over wide ranges
of spatial scales, atmospheric dynamics are scaling (see the
extensive review: Lovejoy and Schertzer, 2013). Predict-
ing such a long-memory stochastic process requires a long
series of historical data, therefore mathematically these
methods are effectively “past value” rather than conven-
tional “initial value” type problems (Lovejoy et al., 2015,
Del Rio amador and Lovejoy 2021).

At first, scaling was invoked to directly mediate the
forcing and the response: a scaling Climate Response
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Function (CRF: Rypdal, 2012; Van Hateren, 2013; Ryp-
dal and Rypdal, 2014; Hebert, 2017; Myrvoll-Nilsen
et al., 2020; Hébert et al., 2021). Recently, it was suggested
by Lovejoy (2019a) that this phenomenological approach
could be made more physical (and realistic) by suggesting
that rather than applying it to the CRF directly, that the
scaling principle should instead be applied to the energy
storage mechanisms. It was pointed out that if this was
done, then both high- and low-frequency memories and
exponents would automatically be explained by a single
more-fundamental exponent h, the (fractional) order of
the resulting Fractional Energy Balance Equation (FEBE).

Since then, another approach starting with energy
balance models has reached the same conclusion and has
shown how the zero-dimensional (global) models can be
generalized to full 2D models for temperature anomalies.
Perhaps the most surprising result (Lovejoy, 2021a; 2021b)
was that an apparently minor change to the classical
Budyko–Sellers Energy Balance Models – the extension
from 2D to the full (classical, integer-ordered) 3D contin-
uum heat equation – generically implies that the surface
temperature satisfies the half-order EBE (HEBE). Finally,
a generalization to the (3D) Fractional Heat Equation was
shown to imply that the (2D) surface temperatures satisfy
the FEBE.

In this article, we pursued a more phenomenological
approach by deriving the FEBE from the scaling princi-
ple applied to the energy storage processes. Mathemati-
cally, the FEBE is a fractional relaxation equation whose
deterministic version has been studied for some while
(Miller and Ross, 1993; Podlubny, 1999), and whose sta-
tionary stochastic version was studied in Lovejoy (2019b)
in order to understand the response to internal forcing.
We showed how the FEBE can be solved using Green’s
functions and we linked the high- and low-frequency lim-
its of the Green’s function to fractional Gaussian noise
(high frequencies dominated by internal variability) and
low frequencies to power-law CRFs for climate projec-
tions. The fact that the stochastic FEBE is a good model
for the internal variability means that the internal variabil-
ity can be used to determine the response of the system to
external forcing, a goal that has been pursued ever since
Leith (1975) proposed using the Fluctuation Dissipation
Theorem for this purpose.

We showed how the response to periodic forcing can
be conveniently handled by considering complex climate
sensitivities, notably to take into account the phase lag
between the annual maximum forcing and the temper-
ature response. This opens the possibility of using the
annual cycle to estimate the model parameters, exponents,
relaxation times and usual (static) climate sensitivities. We
showed that although the FEBE obeys Newton’s law of
cooling, that the heat flux crossing a surface nonetheless

depends on the fractional temperature time derivative
rather than the usual integer-ordered one (this is an exten-
sion of the half-order result that follows quite classically
from the continuum mechanics heat equation). We also
derived the theoretical FEBE ratio of transient to equilib-
rium climate sensitivity (TCR/ECS) and showed that it was
≈0.70, that is, within the 90% confidence interval of GCM
estimates (IPCC AR5).

Finally, we put both the deterministic (external forc-
ing) and stochastic (internal forcing) together into a simple
140-year ramp forcing experiment for the industrial epoch
warming. The model assumed that between 1880 and 2020
there was 1 K of warming and predicted that if the cur-
rent forcing was held constant from 2020 onwards, that
there would be another 0.24 K “in the pipe line”. We then
statistically evaluated the model using Haar fluctuations
and showed that the RMS fluctuations as functions of
time-scale were already fairly realistic, but that precise
parameter estimates are difficult.

Although in this article we only considered the
zero-dimensional FEBE, various extensions to 2D have
already been proposed (Lovejoy, 2021b). When forced by
stochastic internal and deterministic external forcing, the
FEBE thus constitutes a new class of low-frequency atmo-
spheric model that uses historical data and the long mem-
ory to make macroweather forecasts and climate projec-
tions. There are indications (del Rio Amador and Love-
joy, 2019; Procyk et al., 2020) that these are more skilful
and are less uncertain than conventional approaches. The
future challenge will be to improve this approach and
extend it for predicting and projecting other atmospheric
parameters – especially for precipitation.
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APPENDIX A. EMPIRICAL VALIDATION OF
THE RAMP MODEL

To illustrate how the FEBE models both the deter-
ministic external and stochastic internal variability, in
Section 4.5 we presented a simple model that includes
them both (Figures 8 and 9). In this Appendix we give a few
technical details and a statistical validation of the model
using global temperature series.

First, consider the externally forced variability using a
linearly increasing (ramp) model of the industrial epoch

anthropogenic warming. Figure 8 shows the forcing model
(thick black) non-dimensionalized with the long-time
forcing F∞ with the response non-dimensionalized by the
long-time (equilibrium) temperature T∞; since s=T∞/F∞,
the curves are independent of s. The model has a resolu-
tion of the weather–macroweather transition scale (taken
as 10 days) and starting in the year 1825, it solves the FEBE
up to 100,000 days (to the year 2100). The forcing is taken
to be zero up until 1880, followed by a linearly increasing
forcing – a “ramp” – up until the year 2020 (≈51,100 days)
after which the forcing remains constant at that value until
the year 2100.

In the historical part, the forcing is indeed roughly
of this form, the amplitude estimated for 2020 at close
to 2.4 W⋅m−2 (CO2eq forcing, since the beginning of
the industrial epoch). The resolution of the simulation
was the typical weather–macroweather transition time
𝜏w ≈ 10 days, but as long as 𝜏 ≫𝜏w the results for this
smooth, deterministic simulation will be insensitive to
this. However, as explained in Section 4.2 (Equation (41),
Table 1), the resolution is fundamentally important for
stochastic, noise-driven simulations of internal variability.
The future part of the model corresponds to a complete
halt to all emissions (and other forcing) in 2020.

Before continuing, it is worth making a quick com-
ment about the numerical techniques that were used
for the simulations. Numerical convolution algorithms
are very efficient, so that we used the FEBE solution
in convolution form. Since the FEBE Green’s functions
have power-law behaviour at both high and low frequen-
cies, care is required at small and large scales. To avoid
high-frequency problems (especially sensitive since below,
the FEBE is stochastically forced with a Gaussian white
noise), we therefore used the step response G1,h Green’s
function that has a smoother small t behaviour (th) rather
than the impulse response t-1 + h behaviour. After the con-
volution, the resulting series was then numerically dif-
ferentiated to obtain the solution. The low frequencies
also have some issues because of the long memory: the
storage. For simulations of pure fGn this is a nontrivial
issue. Here however, for scales t ≫𝜏, the Green’s func-
tion that determines the memory – although still power
law (Equation 31, t−1−h) – is much shorter than for pure
fGn (t-1 + h) so that it suffices to make simulations of total
length a few multiples of 𝜏. More details are given in
Lovejoy (2019b).

Using these techniques, three plots are shown in
Figure 8, one for each of the relaxation scales 𝜏 = 100,
1,000, 10,000 simulated days (upper left, upper right, bot-
tom). The upper-right simulation with τ = 1,000 days
(≈3 years) has a value close to the various relaxation-scale
estimates and the curve corresponding to the realistic
parameter h = 0.4 (red) is fairly close to the actual
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(a) (b)

F I G U R E A1 (a) The average Haar fluctuation structure function S(Δt) = ⟨ΔT(Δt)2⟩1/2 for six globally averaged monthly-resolution
temperature time series (thick) compared with ramp-model simulations with h = 4/10 (H = h−1/2 = −1/10) analysed over the simulated
period 1880–2012 (these are the series analysed in Lovejoy (2017a)). The simulations have been calibrated so that their RMS variability at
1 year is the same as the data. Simulation results are shown for relaxation times varying from 10−2 days (top left) to 104 days (dashed, bottom
left) each labelled at left by log10𝜏. The reference (thick) line has the theoretical slope (H) for fGn, that is, infinite relaxation time. (b) The
same as (a) except for h = 1/2, hence H = 0 (thick, flat reference line)

reconstructed warming over the period. These curves illus-
trate what might happen if emissions suddenly stopped;
the parts beyond 2020 show the thermal “inertia” in the
system. We see that with only some exceptions at the very
long 𝜏 = 10,000 (≈30 years, bottom) that the response is
very linear over the ramp region, so that the response at
the end of the 140-year ramp is a little larger than the
TCR (defined after a 70-year ramp, see Figures 6 and 7; the
TCR/ECS contours in the figure are fairly horizontal, not
very sensitive to Δt/𝜏).

The h = 0.4 curve on the graph with the most realistic 𝜏
(=1,000 days, upper right) shows that T(2020)/T(∞)= 0.81
(the TCR/ECS is≈0.7, see Figures 6 and 7). If we take
the current increase in temperature since pre-industrial
epoch to be T(2020) = 1 K, then the equilibrium tem-
perature T(∞) = ECS = 1/0.81 = 1.24 K. If we take the
corresponding forcing since the pre-industrial epoch
to be 2.4 W⋅m−2, then s = 1.24/2.4 = 0.52 K⋅W−1⋅m−2;
using the value 3.71 W⋅m−2⋅CO2

−1 doubling, we obtain
s = 1.92 K⋅CO2

−1 doubling. Comparing this with the IPCC
AR5 range of 1.5–4.5 K⋅CO2

−1 doubling (90% confidence),
we see that it is about 4% below the mean and easily
within the range; it is close to the Procyk et al. (2020)
estimate 2.0± 0.4 K⋅W−1⋅m−2. This is surprisingly good
confirmation for a model based only on the scaling storage
assumption.

We can now combine the externally forced part
of the model (Figure 8) with a simulation of the
monthly-resolution internally forced temperatures: the
sum of using the h = 0.4, 𝜏 = 1,000 day model (middle

upper left) averaged over a factor of three to simulate
a monthly resolution series. Figure 9 shows the result
at monthly resolution (thin) and when this is averaged
further to annual resolution (thick); the amplitude of
the noise contribution was chosen to equal ±0.14 K at
monthly resolution, close to the real global statistics. Due
to the (singular) small-scale fGn behaviour, at annual res-
olution, the amplitude of the noise is thus reduced by the
factor 12H = 12–0.1 = 0.78 (Equation (38), H = h−1/2); that
is, the annual anomaly fluctuation amplitude is 0.11 = 12H

0.14 K.
In spite of its simplicity, Figure 9 shows that the model

is apparently quite realistic, yet proper statistical analy-
sis is needed to confirm this. A convenient way to com-
pare the model statistics with those of globally averaged
temperature series is to estimate their root-mean-square
Haar fluctuations. For a series T(t), the Haar fluctua-
tion ΔT(Δt) over an interval Δt is the difference between
the average of the first and second halves of the inter-
val. Figure A1a,b shows the root-mean-square (RMS) Haar
fluctuations S(Δt) = ⟨ΔT(Δt)2⟩1/2 (“< >” indicates aver-
aging over all the available series and disjoint intervals)
for six globally averaged series from 1880 to 2012 (thick
brown) compared to simulated series with various relax-
ation times 𝜏 ranging from 10−2 (top) to 104 days (bottom)
for h = 4/10 (Figure A1a) and h = 1/2 (Figure A1b, the
empirical curve is repeated on each). As mentioned, the
simulations were “calibrated” by adjusting the amplitude
of the Gaussian noise part of the forcing so that the ampli-
tude of the model and empirical fluctuations were equal
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at annual scales. The monthly series are identical to those
analysed in depth in Lovejoy (2017a); full details and ref-
erences are given there.

The Haar fluctuations combine averaging and dif-
ferencing so that their interpretation is straightforward.
When the fluctuations increase with scale (i.e. regimes
where the slopes in the plot are positive), and the raw
fluctuations are multiplied by a factor 2 (as they are here,
this is the canonical factor), the differencing dominates
and the values are close to the RMS differences that quan-
tify the typical change in temperature over a given time
interval. For example, the figure shows that at centen-
nial scales (far right), the typical fluctuations are of the
order of 1 K. In scale ranges over which the RMS fluctu-
ations decrease, the averaging dominates and the values
are close to the anomaly fluctuations, that is, the temporal
mean of the series over Δt after its overall mean has been
removed.

Over the range of 2 months (the smallest Δt) to about
10 years, their approximate slope (indicated in by the
straight reference lines in Figure A1a,b) is about H =−0.1.
In this decreasing macroweather regime, successive
fluctuations tend to cancel each other out; the series
appears to be stable. For Δt ≈>10 years, the fluctuations
start increasing: the climate regime. Ten years is the typ-
ical scale at which the response to anthropogenic forcing
exceeds typical responses to internal forcing; at these

scales, fluctuations no longer tend to cancel each other
out, the series appears to be unstable.

According to the high-frequency theory we developed
in Section 4.2, for time-scales much smaller than the relax-
ation scale 𝜏, the stochastic part of the response is an fGn
with RMS exponent H = h−1/2, so that when Δt ≪𝜏 is
large enough, S(Δt)≈ΔtH . Figure A1a shows the simu-
lation results for the empirically estimated h = 4/10, and
the theoretical (large 𝜏) H = −1/10 reference line is shown
in red. Even when 𝜏 = 104 days (≈30 years, dashed) the
small Δt slope of the simulation S(Δt) is still a little high,
although overall the fit is not bad. When we compare the
simulation structure functions for decreasing 𝜏, we note
a surprising feature: the log10 S(Δt) versus log10Δt plots
are remarkably linear over several orders of magnitude
but with (absolute) slopes that systematically increase as
𝜏 decreases. Without the deterministic ramp that dom-
inates the lower frequencies, this “pseudo-scaling” was
investigated further in L3. Rather than being a true scaling
regime, it is in reality a very slow transitional regime from
high-frequency ΔtH to Δt−1/2 (H <0, independent of h, H).
Figure A1b shows the same simulations but with h = 1/2,
H = 0. In this case, the effect is even more pronounced with
the data being more compatible with 𝜏 ≈ 103 days (3 years).
From these simulations, we see that when only a factor
of 100 or 1,000 in scale is available for analysis, it may be
difficult to accurately measure h and 𝜏.


