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Abstract. We show that a recent proposal for "log-Poisson” multifractality in
turbulence is in fact a weak hypothesis of universality of turbulent cascades. By using
the Lévy canonical measure, we relate this weak universality to the classical strong
multifractal universality involving stable Lévy multifractal generators. Finally,
using high Reynolds number atmospheric data, we show that for both weak and
strong events, the data are inconsistent with Log-Poisson multifractality, whereas —
when multifractal phase transitions are taken into account — it is extremely close to
the strong universality over the entire range of singularities.
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1 Introduction

A recent series of papers [1-4] consider new aspects of universality of scaling laws in
fully developed turbulence. They discuss the particular case of multifractal
universality ruled by Log-Poisson statistics [2, 4] originally motivated by
filamentary structures [1]. Below we show that this suggestion is simply the
continuous limit of the o-model [5], which was a pedagogical but hardly realistic
model. Thereforc, we argue that a priori it will be less relevant than existing
proposals for strong multifractal universality ([6, 7]; see also {8] for simulations). On
the contrary, the classical strong universality when combined with multifractal phase
transitions [9] fits the entire spectrum of observable singularities extremely well [10,
11, 12].

2 Universality
2.1 The general framework

Mathematically, an infinite number of parameters is generally necessary to specify a
multifractal process. This is because the hierarchy of singularities ¥ can have

arbitrary (convex and increasing) co-dimensions c(y) — or equivalently arbitrary
(convex) scaling moment functions K(g) of the orders of moments g (we have used
the codimension/Cramer function multifractal formalism [6, 13]). Taking L the outer
scale, ¢ the scale of observation A = L /¢ as the scale ratio, then ¢, K are defined:
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Pr(e, 2A7)= A7 5 <(g, )" >= 24@ W

where "Pr" indicates "probability” and the angle brackets ensemble averages.

Unless only a few of the infinite number of parameters are physically relevant
(determining the “universality” classes) such cascades would be unmanageable either
theoretically or empirically. It is therefore unfortunate that after simplistic claims on.
lognormal universality in turbulent cascades e.g. [14] there had been several attempts
to deny universality for multifractals [15-17]. The technical difficulty is that although
the fundamental singular small scale limit prevents iterations of the process to
smaller scales from approaching a universal limit (see [18] for discussion) this in no
way contradicts the general idea of universality. In the following we will distinguish
two types of universality both of which can be illustrated with random walks.

Strong universality e.g. [19] refers to stable and attractive walks (for i.i.d. steps
AX;) under some rescaling and/or recentring (with 5(N) and a(N)), i.e..

N AX;—a(N) .

2 om) atd @
For elementary steps with finite variance the process converges to a Brownian
motion, whereas for divergent variance (i.e. critical order of divergence of moments

a<2:all gza: <|AX|' >=co) it converges [20] to Lévy stable laws (L, for

which b(N) e« NY%; a(N)e< N).

In constrast, a weaker type of universality exists, not requiring stability and
attractivity {under renormalized) sums, but rather the property that a finite step can be
always decomposed into a sum of N more elementary i.i.d. steps involving a limited
number of parameters, i.e.:

N

V N,a AXN"' N Y =ZAXNJ (3)

i=l

where Y has an infinitely divisible law. Note that we call this weaker universality
because L, satisfies (3). It is easy to derive ([21] for brief arguments and [22] for
more mathematical ones) a common expression for their second (Laplace)
characteristic function (cumulant generating function) K(g) by considering
“homogeneous random™ sums instead of deterministic ones, i.e. a Poisson
distribution (parameter p) of jumps of intensity distributed by a “Lévy canonical
measure” dF(x). which needs not be a probability measure (the recentring term gx

is only needed when this measure is too singular at the origin):

<e™ >= 5D 5 Ky (q)= p[(e™ -1+ gx)dF(x) @
0
Strong universality corresponds to (recentring needed for @ 21):
dx
dr = Caw;05a52 (&)}

2.2 Strong universality in multifractals

Instead of considering only the iteration of the process down to smaller and smaller
scales, one can first consider interactions of this process over a finite range of scales
A with larger and larger numbers of its replicas, and then seek the limit A—eo, ic.
(with possible combination): (i) “nonlinear mixing” of these processes:
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multiplication of independent, identically distributed processes on the same scales,
(ii) "scale densification™ of the process: introducing more and more intermediate
scales. In both cases, multiplying processes ( €) corresponds to adding generators (')
defined as:

gy =e'n (6)
Taking the power 1/b(N) of g¥ corresponds to rescaling 'Y by 1/b(N) as in (2).
Equations (4) and (5) yield the strong universal scaling functions K(q) and c(y),

(where —l—+L'= land C| (=c, EQ_—_CQ) is the codimension of the mean field
a o o(a-1)
(g=1); and its singularity at the same time) {6,7]:
o
Y 1 o a
c(N=C|—+—1| ; K(@)=——(q" - 7
(7) I(Cla, a) @=—70 -9 Q)

2.3 Weak universality in multifractals

It seems reasonable that one must seek weaker types of universality only when there
is a failure of strong universality (no renormalization of the generator). In this case
the generator and its iterates are only loosely related; they no longer involve rescaling
and/or recentring. The a-model [5] is the canonical (binomial) model generated by a
(Bernouilli) two-state generator ¥ on elementary discrete step scale ratio A

=A,"° —}3.-c R
dP(y)=2"6,_. +A=24798 . v",7720 o
AK@D = 4 7 (1- A7)

Canonical means conservation on ensemble averages (ek)z (sl) for any A; y*is
the upper bound of singularities; ¢ (= c(y™)) is its codimension and can be chosen
rather arbitrarily; ¥~ is the lower bound of singularities and is constrained so that the
ensemble average <(/1,)y >=1; the (monofractal) f-model [23] is recovered for

¥~ =oo, y* =¢=C,. Whereas the central limit theorem was used [24] to show that

the (renormalized) nonlinear mixing of (discrete) o-models leads to a (continuous)
lognormal multifractal process, one may consider on the contrary the classical

Poisson limit, by using a smaller and smaller elementary step (4, /N=}~1” N
N > =) of the binomial law (of occurrences of weak eddies) with parameter

p=N(l—()~1,N)'c)=cLog(Al ), and correspondingly a (simple) Poisson process

identical for €, to the model considered in [1, 2, 4]; (8) yields in this limit:
— . + _ -7
dF = (5)‘”_1‘0“l syt =(1-A47T )

+\4
K(q)=qy*+(/11“’7‘—l)czqy+—c+(1—l'c—) ¢ )

+__ +_
() =(1~u(1_10g1___7)]c y<yt oly) == vt <y
cy cy
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Assuming (non fractal, D=1) filament-like structures for the highest order
singularity and homogencous eddy turn over times, She and Leveque [1] selected: ¢=2,

y* =2/73, and mean conservation yields A7 = 5. In MHD turbulence, considering
current sheets extreme events and also homogeneous eddy turn over times, one selects
[25] c=1, y* =1/2. These choices are obviously questionable.

3. Theoretical and observable bounds on singularities

For normal and Lévy (o>1) generators (the corresponding processes are inaccurately
termed “log normal” and “log-Lévy”) there are no bounds on 7, as is generally the
case for canonical processes. On the contrary, micro-canonical conservation (i.e. per
realization) of the flux of energy — e.g. the microcanonical version of the a-model
called the “*p-model” [26] —, imposes ¥ < D (the dimension of space). For D=1, it is
the celebrated inequality (expressed via K(g)) of Novikov [27] who in fact imposed
microcanonical conservation by considering, instead of the flux of energy, the
dissipation. In the inertial range — especially in the limit of infinite Reynolds
numbers — the relevance of the dissipation is questionable, especially since it is
bounded by volume integration.

Frisch [16] argued for a physical bound to singularities due to the finite speed of
sound, whereas Schertzer et al. [28] considered both incompressible Navier-Stokes
equations (without any characteristic velocity, infinite speeds of sound) and the
physical issues of compressible turbulence involving compressibility effects. The
corresponding hypersonic gradients are of course beyond the scope of incompressible
Navier-Stokes equations.

On the contrary, in a serics of papers [9] we argue that not only do unbounded
singularities pose interesting problems of observation and estimation, but are a
requisite to the introduction, via first order multifractal phase transitions, of a non
classical Self-Organized Criticality (SOC), which is often desirable in order to explain
the phenomenology of extreme events.

For SOC singularities ¥ =y, ( yp 2 D being the critical singularity of transition
1o SOC), the observed singularitics (empirically bounded by 7, the maximum
reachable singularity in the samples studied) has a codimension different from the
theoretical one given by (7):

c(r)=qpy—K(qp) Y270 =K (qp)

K(q)=7v:9—c(Ys) 924p (10)
v =7p+ c(¥:)=<(¥p)
qp

The observed codimension for SOC singularities ( ¥ 2 yp ) follows the tangent instead

of the theoretical parabola-like codimension, which means that the probability
distribution of these extreme events has an algebraic fall-off. Consequently there is a
divergence of higher order moments g 2 g, for infinite samples. However, because of

the finite size of empirical datasets, estimated K(q) for g 2 g, are also linear in g, of
slope 7, . given by (10); when the number of samples increases, ¥, — oo. There isa

priori no compelling reason that y* < D in either the Log-Poisson or a-model:
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indeed, the oi-model was developed to illustrate the generality of divergence of
moments for multifractal fields, its basic parameter o being qp =(c—D)/(y* - D)

lfor ¢c>9%).

0,25 =
~—~ 0'00 —;
=-0,25
S-o,so-f

E - ..

075 3 Empmrial values
& i M~™.- T Log-Poisson
- -1,00'5 j —— Log-Lévy o =1.5

BELE: Bt ——— Y

-0,75 -0,50 -0,25 0,00 0,25

Fig. 1 Double trace moment estimate of the energy flux: K(3,n) vs. 1 in a log-log plot,

where K(q,n)= K(qn)—gK(n). In this figure, the log-Poisson model yields a slope (=)
of 2 (due to analycity), whereas empirical values yield a=1.5.

4. Empirical Evidence

Here we use velocity measurements recorded 25 m above ground, over a pine forest in
south-west France, sampling al @=10 Hz. We analyzed 22 profiles of duration 55
minutes each: they present a w™>" scaling over frequencies from about @ /1000 to
w/?2 (see [12]). Here we present direct and precise estimates using “extended self-
similarity” (ESS) [29,30] which is useful in accurately estimating structure functions
scaling exponents; it has been used to compute the first 10 integer moments, and to
compare them with theoretical models [1,2,4]. We prefer here to estimate a (near)
continuous empirical curve {(g) for real ¢, taking absolute values of the increment:

((av, )Y =(vex+Lr-veal)= ((av e an

The widely accepted Kolmogorov refined hypothesis [31] relates the scaling
singularities of the wind velocity increments 7, to those of the energy flux, as well

as to their respective scaling functions:

Y sl SO (1)
T ="3 ; C(@) 3 K 3 (12)

The Double Trace Moment technique [32] has been widely used to test the non
analyticity of K(g) (@<2). The data at the highest resolution is raised to the power 17)
and then the corresponding (trace-) moment is estimated. One obtains a scaling
function K(q,7) (K(g.1)= K(q)) which at least for small 7 scales like n* (=2 in
case of analytical K(g)). This technique applied [11] to our data (Fig. 1) clearly
yields a=1.5, instead of a=2 for the Log Poisson model and o-model (see
theoretical curves). One may note that similar values for o have been found in
numerical simulations of Navier-Stokes caricatures [33].
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We can on the contrary test the high order singularities directly with the help of
the structure functions: Fig. 2 displays empirical estimates of {(q); ¢ =015 for
N=2 and 22x32=704 realizations, the empirical values of Benzi [30] as well as the
theoretical estimates of the Log Lévy and Log Poisson (rather identical to the a-
model). We also estimate C, =K' (1)=1-3{" (3)=0.15.

© Empirical estimate; N=2

* Empirical estimate; N=704

B Empirical estimate from Benzi
=--= Log-Lévy & =1.5;C1=0.15
"""" Log-Poisson

w—== ] .0g-Poisson: asymptote

—— Empirical asymptote, N=704

01 23 45 6 7 89 101112131415

Fig. 2 Empirical values of the structure function scaling exponent ¢(g) — for 2 and 704
realizations, and Benzi's estimates [30] —, compared to log-Poisson and log-Lévy
models. For large order moments, empirical estimates follow straight lines; the log-
Poisson asymptote does not fit the empirical estimates, whereas the Lévy generator is
consistent with the change of slope of the asymptote for 2 and 704 realizations.

First we see in Fig. 2 that the empirical estimate for 2 or 704 realizations are
very close to Benzi’s estimates for integer moments for ¢<8. Furthermore, for the
same range of ¢ the universal multifractals fit very well the empirical results. Up
until moments order =g = 6, it is not possible to distinguish between the different
models using the structure function scaling exponent; Fig. 1 shows that indeed other
analysis techniques such as the double trace moment, are very useful to discriminate
between different universal models.

But for larger order moments, there are visible discrepancies with the $(q)
estimates. We see also that the estimates for 2 and 704 realizations deviate
significantly from each other for moments order g2 qp ~7+0.5, and that for these

values {(g) is linear as predicted by (10) and (12) (with —7,,=0.19 and 0.124 and
¢(¥,y)=0.62 and 1.11 for 2 and 704 realizations respectively). We may note that in
Log-Poisson model there is also a linear asymptote which is reached for very large
order moments: {(g)=4q+2. This behaviour is clearly not compatible with our
data: for 2 realizations, the asymptotic slope is too large, and if we increase the
number of realizations, it decreases, getting smaller than 1/9 (if we had more

realizations, but even here for 704 realizations the intercept of the asymptote is
clearly too small to be compatible with Log-Poisson extreme events). We finally
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note that the critical moment g, =7+0.5 is the order of divergence of moments

previously estimated with different methods [12]. We predict here that all structure
functions scaling exponent are linear for moments larger than this critical value, with
a slope which decreases with the number of realizations as more and more SOC
structures are analyzed (see [34] for meteorological implications).

5. Conclusions

There have been many attempts to give special importance to different basic
structures in turbulence. The multifractal approach has the advantage that such
structures need no longer be input in an ad hoc way; they are generated automatically
by the cascade — the singularities. However, without any other considerations, the
multifractal approach would be useless since it would involve an infinite number of
parameters. The classical (strong) universality hypothesis for multifractality uses
statistical and physical arguments to reduce the number of parameters to a small finite
number, but without any ad hoc assumptions about structures. We argued that strong
universality should not be abandoned unless other compelling theoretical or empirical
reasons can be given. We have evaluated a recent proposal based on the possible
special role of filament-like strucutres which corresponds to a weak form of
multifractal universality which is a continuous limit of the a.-model, sharing the
latter's unattractive assumption of an upper bound on the singularities. We show
empirically, that the weak universality is quite incompatible with the data for both
weak and strong events, whereas the strong universality is extremely well respected
by the data.
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