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Copepod diffusion within multifractal phytoplankton fields
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Abstract

Oceanic turbulence has been considered for a while as one of the main sources of the heterogeneity of the phytoplankton
field over a wide range of scales. However, it is only recently that the intermittency of turbulence has been taken into
account, although it is rather indispensable in the explanation of the observed patchiness of the plankton field. In order to
improve the understanding and characterization of the diffusion of copepods within an heterogeneous phytoplankton field,
we developed a model based on particle diffusion in a multifractal field. After discussing this model with some detail, we
used it and the corresponding numerical simulations in order to investigate the fundamental question: does the strong
heterogeneity of the phytoplankton generate a anomalous diffusion of the copepods? Although a positive answer is obtained
in a rather straightforward manner for a one-dimensional multifractal field of phytoplankton concentration, the answer is

Ž .rather more involved for a greater topological dimension of the field, contrary to some previous claims. q 1998 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Understanding the effect of the oceanic turbulence
on secondary production, i.e. the transfer of organic
matter from phytoplankton to zooplankton, is a chal-
lenging objective. In particular, one would like to
know how much the development of turbulence in-
creases the predator–prey contact rate, favorising the
zooplankton. The existence of intimate relationships
between physical and biological processes has been

Žpreviously considered Denman and Powell, 1984;
.Legendre and Demers, 1984; Mackas et al., 1985 ,
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due to the observed coupling between the distribu-
tion of phytoplankton populations and the structure
of their physical environment over a wide range of

Žspatial and temporal scales Haury et al., 1978;
.Steele, 1985 . However, in order to demonstrate it

and understand it better, one needs to simulate the
involved biological and physical processes on a simi-
lar range of scale. Unfortunately, this cannot be done
by direct numerical simulations due at least to the
rather limited memory size of our computers. The

Ž .classical approach Malchow and Shigesada, 1994
corresponds to truncating the original set of govern-

Žing equations in a narrow band of scales e.g. with a
scale ratio of the order which is at best of one

.hundred on supercomputers , which is turn requires
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Žad hoc parametrizations the so called sub-grid mod-
.elling . Instead, we consider a multifractal modelling

of the fields, i.e. a stochastic modelling physically
based on the scale symmetries of the original equa-
tions. These symmetries are immediately lost as soon
as the corresponding equations are truncated. Space
andror time multifractal modelling has been origi-
nally developed for hydrodynamic turbulence, clouds
and rain fields. More precisely, these techniques will
be used in order to simulate the phytoplankton field
advected by oceanic turbulence, as discussed in Sec-
tion 2. The copepod diffusion —diffusion being
understood in the sense of displacement of inert or

Ž .living particles within a media Okubo, 1980 — will
be controlled by a local diffusivity depending on the

Žlocal concentration of the phytoplankton see Section
.3 . Corresponding to the notion of zooplankton graz-

ing, the general rule to be followed is that this
diffusivity should decrease with phytoplankton con-
centration, since copepods linger where the food is
most abundant, and move away from where the food
is scarce. Therefore, we have to study the diffusion
of particles in a multifractal media. This diffusion is
expected to behave quite differently from the classi-
cal and so called ‘normal’ diffusion in homogeneous
media, which corresponds to Brownian particle walks
Ž .e.g. Gouyet, 1992 . Indeed, this anomalous diffu-
sion should reflect at a given level the intermittency
of the medium, i.e. particle walks should have bursts
of speedy diffusion which do not exist in the case of
normal diffusion. We will discuss how to character-
ize this anomalous diffusion and we will show that
one cannot rely on the classical method of estimating
the scaling of the average distance travelled by parti-
cles as a function of time.

2. Multifractal phytoplankton fields

2.1. Oceanic turbulence, its intermittency and the
heterogeneities of the phytoplankton field

Oceanic turbulence corresponds to a cascade of
Ž .eddies from large scale e.g. waves and tides down

to a small scale of dissipation, in a similar way to
Žatmospheric turbulence Richardson, 1922; Kol-

.mogorov, 1941 . At the level of a first approxima-
tion, phytoplankton biomass may be considered as
passively advected by it and therefore one may

expect a statistical behaviour close to that of the
Ž .passive scalar temperature, salinity, . . . . Passive

scalar advection was first theoretically investigated
Ž .Obukhov, 1949; Corrsin, 1951 in the framework of

Žhomogenous turbulence Kolmogorov, 1941;
.Obukhov, 1941 , i.e. considering implicitly quasi-

Gaussian statistics. The process is therefore rather
well defined by its spectral properties, since they
correspond to Fourier analysis of second order mo-
ments. The power spectrum of the variance of the
scalar field should scale like the energy spectrum,
i.e. having the well-known ‘y5r3’ power law. This

Žhad been indeed empirically confirmed Platt, 1972;
.Platt and Denman, 1975 .

However, turbulence is far from being homoge-
neous: it is indeed strongly intermittent, with bursts
of activity inside of bursts of activity . . . This

Ž .‘patchiness’ Batchelor and Townsend, 1949 corre-
sponds to the fact that the rate of energy transfer and
the variance fluxes of passive scalars from large to
small scales exhibit at all scales fluctuations far from

Žbeing quasi-Gaussian Kolmogorov, 1962; Obukhov,
.1962 . In contrast to the Gaussian case, the determi-

nation of the corresponding probability distribution
requires the determination of moments of higher
orders. With the assumption of scaling, this determi-

Ž .nation reduces see below the estimation of the
corresponding exponents. However, the latter de-
velop an a priori infinite hierarchy and they remain
rather indeterminable, especially for the highest or-
ders which correspond to the most extreme variabil-
ity. A further and manageable reduction is obtained

Žin the framework of universal multifractals Schertzer
.and Lovejoy, 1987a, 1989 . As discussed below, the

infinite hierarchy is then characterized by only a few
relevant exponents. Recent analyses showed that the
observed phytoplankton biomass is in agreement with

Žuniversal multifractal spatial distribution Seuront et
.al., 1996a and the estimates of the universal multi-

fractal parameters will be used to simulate intermit-
tent turbulent phytoplankton fields.

2.2. Multifractal models of the intermittency of tur-
bulence

A first model, which takes into account the fact
that the eddies fill less and less space and concen-
trates more and more the flux of energy, is the
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Ž‘b-model’ Novikov and Stewart, 1964; Mandelbrot,
.1974; Frisch et al., 1978 . This model considers a

‘dead or alive’ alternative for an eddy breaking into
sub-eddies: the latter are either dead or alive. Iterat-
ing this process corresponds to a ‘black and white’
picture of intermittency: the activity of turbulence is
zero everywhere with the exception of a fractal set,
the so-called fractal support of turbulence
Ž .Mandelbrot, 1974 . The intermittency is fully char-

Ž . Ž .acterized by the unique fractal dimension D ofs
Ž .this geometric set, or equivalently by the parameter

b , which corresponds at the same time to the rate of
concentration of turbulence and the inverse of the
probability of survival for an off-spring:

Pr e Gby1 sb bslycŽ .l
1Ž .

Pr e s0 s1yb csdyDŽ .l s

Pr denotes the probability of the singularity e ofl

the multifractal field at the scale ratio l. c is the
codimension corresponding to D in a d-dimensionals

Žembedding space. Schertzer and Lovejoy 1983a,
.1985 showed that the ‘dead or alive’ alternative is

over-simplistic, since as soon as one considers a
Ž‘weak or strong’ assumption the ‘a-model’, see Fig.

.1 , the black and white picture of intermittency
disappears for a coloured one: the level of activity

Ž .ranges from extremely weak say red to extremely
Ž .strong say green with all the possible intermediates

yielded by the combination of mixtures of weak and
strong along the cascade process. Instead of having a
unique fractal support, we obtain an embedding of
sparser and sparser fractal sets, for more and more
active turbulence. This corresponds to the notion of

Ž .multifractals Parisi and Frisch, 1985 . One may note
Ž .that the p-model Meneveau and Sreenivasan, 1987

corresponds to a micro-canonical version of the a-
model, i.e. a conservation realization per realization
instead of an ensemble conservation corresponding

Ž .to canonical cascades e.g., a-model .
Despite their pedagogic interest, these models

have many drawbacks. One in particular drawback is

Ž . ŽFig. 1. Scheme of a discrete multiplicative cascade. This cascade is developed from the outer scale L homogeneous eddy, i.e. its activity:
Ž . . Ž n . Ž . Ž .e x s1 to the scale ll s Lrl where n is the step of the cascade cascade levels . l s2 is the discrete scale ratio of the cascade,0 0 0n

Ž . Ž d .where the distribution of e x is extremely inhomogeneous. Fractions of activity transmitted from parent eddies to each of their N sln 0
Ž .off-spring are identically independently distributed i.i.d. random variables, i.e. the activity level of a given off-spring is the product of that

of its parents by this i.i.d. ‘multiplicative increment’ corresponding to this fraction. For simplicity sake, a two-dimensional cut of this
cascade is presented. The eddies energy is proportional to their height.



( )C. Marguerit et al.rJournal of Marine Systems 16 1998 69–8372

that of being discrete in scale, i.e. the cascade pro-
Ž .ceeds by a fixed scale ratio l )1 . Before seeing0

how to overcome these limitations by including con-
Žtinuous cascade models Schertzer and Lovejoy,

.1987a , we need to consider the statistical characteri-
zations of multifractal fields.

2.3. Statistics of multifractal fields

The b-model and a-model are the simplest multi-
Ž .plicative discrete cascade models, which are ob-

tained by considering that the fractions of activity
Že.g., fractions of the flux of energy or scalar vari-

.ance transmitted from parent eddies to their off-
Ž .spring are identically independent distributed i.i.d.

random variables. In other words the activity level of
a given off-spring is the product of the activity level
of its parent by this i.i.d. ‘multiplicative increment’
corresponding to this fraction. The non-trivial limit
of the process down to infinitesimal small scale
corresponds to infinite products of i.i.d. multiplica-
tive increments. The independence of these incre-
ments leads to the following scaling behaviour
Ž .Schertzer and Lovejoy, 1987a for the q-th order
statistical moment of the field e at the scale ratiol

Ž . Ž .ls L r ll where ll is the corresponding scale
and L is the maximal scale of the process:

q K Žq .e Al 2² :Ž . Ž .l

Ž .K q is the scaling function of the moments, the
prefactor being a constant or a slowly varying func-

Ž Ž ..tion of l e.g. log l . Since, under rather general
conditions, the determination of the probability dis-
tribution and of the statistical moments of a random
variable are equivalent, one may expect also some
analogue scaling behaviour for the probability distri-

Ž .bution see Fig. 2 for illustration :

Pr e Glg Alyc Žg . 3Ž .Ž .l

where g is the ‘singularity’ or more precisely speak-
ing the ‘order of singularity’: when positive, g is
indeed the algebraic order of divergence of the field

Ž . Ž .e with the increasing scale ratio l. c g is thel

Žstatistical ‘codimension function’ Schertzer and
.Lovejoy, 1992 which describes the sparseness of the

field intensities: when smaller than the dimension of

Ž .Fig. 2. The statistical codimension function c g . A fundamental
statistic of the cascade corresponds to measure the probability

Ž Ž .subspace where e the field observed at a scale ratio ls Lr lll

Ž . g Žexceeds a scaling threshold l g being an arbitrary ‘singular-
. Ž .ity’ . This quantity should be scaling and its exponent c g is the

Ž g . yc Žg .statistical codimension function: Pr e ) l f l . This fig-l

ure shows clearly that corresponding to the fact that the strongest
Ž .singularities are the rarest, c g is an increasing function, since

Ž .the probability distribution decreases with g :g )g ´c g )2 1 2
Ž .c g .1

the space in which the process is observed, the
codimension is the difference between the dimension
of space and the fractal dimension of the subset. This

Ž .generalizes in many ways the mono- fractal rela-
Ž .tionship displayed in Eq. 1 .

The relationship between moments and probabil-
ity distribution implies a very simple relationship
between the corresponding exponents: they are in-

Ždeed related by the Legendre transform Parisi and
.Frisch, 1985 . This corresponds to:

K q qc g sqPg 4Ž . Ž . Ž .
and a one-to-one relationship between orders of mo-
ments and of singularities:

gsK X q 5Ž . Ž .
qscX

g 6Ž . Ž .
Ž .It can be shown that K q is convex, therefore

Ž .c g is also convex since convexity is preserved by
Ž .the Legendre transform. Furthermore, Eq. 3 implies

Ž . Žthat c g is positive and increasing see Fig. 3 for
.illustration . These are the only mathematical con-

straints which should be satisfied by these two func-
tions. At this level of generality, both functions
depend on an infinite number of parameters. One
may easily understand that they will be extremely
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Ž .Fig. 3. Schematic representation of the c g function and its main
Ž .properties. The c g function is positive, increasing and convex.

For a conservative process, it is tangential to the bisectrice
Ž . Ž .c g sg at the point C sc g sg which measures the mean1

heterogeneity of multifractal fields.

difficult to empirically determine without any further
assumption based on physical processes.

2.4. UniÕersal multifractal fields

The general theme of routes to universality
ŽSchertzer et al., 1991, 1995; Schertzer and Lovejoy,

.1997 is that instead of considering only the iteration
of the process down to smaller and smaller scales
Ž .Yaglom, 1966 , one should first consider interac-
tions of this process over a finite range of scales L

with larger and larger numbers of its replicas, and
then seek the limit when L™`. This disproves the
allegations of non-existence of any universality
Ž .Mandelbrot, 1989; Gupta and Waymire, 1993 based
on some shortcomings of previous claims of univer-
sality.

A rather strong and straightforward universality
corresponds to generators which are stable and at-

Žtractive under addition hence similar properties for
.fields under multiplication , via some more or less

Žtrivial renormalization i.e. rescaling andror recen-
.tring . In this case, generators and fields are defined

by the following three universal exponents:
– H is the deviation from conservation of the

mean fields: Hs0, the field is ‘conservative’, i.e.

strictly scale invariant on average; H/0, the field is
‘non-conservative’;

– C characterizes the mean heterogeneity of1

multifractal fields: it is the codimension of the mean
Ž .field see Fig. 4 for an illustration ;

– a measures the multifractality of the field and
is precisely defined as being the Levy index of the´
generator: its values are bounded by as0, corre-

Ž .sponding to the mono- fractal ‘b-model’, and as
2, corresponding to the ‘lognormal model’
Ž .Kolmogorov, 1962; Obukhov, 1962; Yaglom, 1966 .

In the case of the phytoplankton biomass, we
Ž .have the following estimates Seuront et al., 1996a

Žfor the time series: Hf0.4, C f0.05, af1.8 in1
Žspace, 1 m–1 km, Tessier et al. private communica-

.tion, 1997 finds Hs0.21"0.1, C s0.06"0.02,1
.as1.9"0.1 . One may note the following analyti-

cal expressions of the universal scaling functions
Ž . Ž . ŽK q and c g see Figs. 3, 5 and 6 for an illustra-
.tion :

a

ay1g 1
c gyH sC P q 7Ž . Ž .1 a a� 0C P1 ž /ay1

C1 aK q s P q yq yqPH 8Ž . Ž . Ž .
ay1

If, for any physical reason, the ‘strong’ universal-
ity fails to hold, weaker types of universality may

Ž .still prevail Schertzer et al., 1995 corresponding to
different sub-classes of infinitely divisible generators
Ž . ŽNovikov, 1994 . For instance as noted by She and

.Waymire, 1995 , the log-Poisson statistics, consid-
Ž . Ž .ered by She and Leveque 1994 and Dubrulle 1994 ,

provide a particularly simple example —which turns
Ž .out to be a non-renormalized continuous limit of
Ž .the a-model Schertzer et al., 1995 .

3. Simulation of the copepod diffusion

3.1. General considerations on diffusion

Ž .An animal diffusion in a liquid medium can be
decomposed into a physical ‘passive’ diffusion and a

Ž .biological ‘active’ diffusion Okubo, 1980 . The
physical diffusion is due to the properties of fluid
which surrounds the animal, the biological diffusion
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Fig. 4. Variation of the mean heterogeneity of multifractal fields with C . From top right to bottom left, C increases from 0.0001 to 1.20001 1
Ž .and correspondingly the mean inhomogeneity becomes higher and higher. In particular the higher singularity becomes larger and larger.

Ž .Fig. 5. Variation of the statistical moments in function of the scale ratio. Log–log plots statistical moments of order q vs. scale ratio g of
Ž . Ž .a numerically simulated conservative Hs0 multifractal field i.e. with a scale invariant mean . The estimate of the slope corresponds to

Ž . Ž .an estimate of the scaling moment function K q . For qs0, 1 K q s0, corresponding respectively to conservation of the total probability
Ž Ž . Ž . .and conservation of the mean. The change of signs K 0.1 -0, K 2 )0 is due to convexity.
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Ž .Fig. 6. Experimental and theoretical curves of the function K q
Ž .and its main properties. The function K q is convex, positive

XŽ .and increasing for q-1. Its tangent in qs1 verifies K 1 sC1
Ž .y H and K 1 sy H. In the conservative case, Hs0 and

XŽ . Ž .therefore K 1 sC and K 1 s0. The observed divergence1

beyond a critical moment order q between the experimental ands
Žtheoretical curves is due to the fact that the sample is finite only

.one image of 1024=1024 pixels of the simulated field .

corresponds to the swim of the animal. Both can be
cast into the rather general equation of diffusion:

d p Ep
s qdiv j 9Ž . Ž .

d t Et

Ž .where p x,t is the probability density of finding a
given number of particles at the location x and at

Ž . Ž . Žtime t, d r d t is the Lagrangian derivative the
.global time differentiation following particles ,

Ž . Ž . ŽE r Et is the Eulerian derivative the partial time
. Ždifferentiation at a fixed location , j is the flux or

.current of probability. The latter does correspond
Ž Ž ..by integration of Eq. 9 to the number of particles

Ž .exiting a given volume V of finite surface EV :

d E
Ps PqJ 10Ž .

d t Et

Ž .P V,t being indeed the probability of a given num-
ber of particles in the volume V at time t:

P V ,t s pdÕ 11Ž . Ž .HHH
V

with the corresponding flux:

Js jPd s 12Ž .HH
EÕ

Its conservation following any infinitesimal volume
Ž . Ž .dÕ implies that the left hand side l.h.s. of Eq. 9 is

zero, therefore:

Ep
sydiv j 13Ž . Ž .

Et

Žor for any elementary volume V e.g., a pixel in
.numerical simulations

E
PsJ 14Ž .

Et

These equations are often closed by assuming that
the flux of the particle follows the gradient, i.e. by
introducing a diffusivity coefficient k :

jsykgrad p 15Ž . Ž .
when the diffusivity is homogeneous in space, one

Žobtains the classical diffusion equation the so-called
.Fick’s diffusion :

Ep
skDp 16Ž .

Et

which yields a Gaussian probability distribution for
Žtheir location x for particles initially released at

time ts0 from location x s0, with a zero veloc-0
.ity

Ž .2xyx1 0
yp x ,t A eŽ . 2 k t'2k t

and the corresponding Langevin equation, i.e. kine-
Žmatic equation of particles at location x, with a
.characteristic friction time t :

d
x t stPg t 18Ž . Ž . Ž .0d t

k
X X² :g t g t s d ty t 19Ž . Ž . Ž . Ž .0 0 2

g being a Gaussian white noise of correlation.O
Ž .However, since Richardson 1926 we know that

Fickian diffusion does not hold true for turbulent
flows at large Reynolds numbers, since indeed, we
have:

JsuPykgrad P 20Ž . Ž .
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Žand the first term corresponding to advection by
Ž . Ž ..turbulent velocity field u cannot be neglected at
all and becomes of prime importance. At least, it
introduces an effective scaling ‘eddy diffusivity’ ked

which is quite larger than the molecular diffusivity k

Ž .for scales above the molecular diffusive scale:

1
2

3 yŽ ll .k Ae ll 213 Ž .ed

3.2. Diffusion of plankton

We should consider at least two coupled equa-
tions of diffusion, one for the phytoplankton, the
other one for the zooplankton. For both, the physical
turbulent advection could be modelled with the help
of a multifractal eddy diffusivity. On the other hand,
the coupling could also be modelled for instance by
introducing the Scheffer predator–prey model
Ž .Scheffer, 1991 into the hydrodynamic equations
Ž .Malchow and Shigesada, 1994 . However, this pa-
per aims to clarify some rather preliminary ques-
tions. Indeed, diffusion in a multifractal medium has
been scarcely investigated. As discussed below, if
the anomalous character of diffusion in a multifractal
one-dimensional medium has been established
ŽHavlin and Ben-Avraham, 1987; Silas et al., 1993,

.Lovejoy et al., 1996 , and tackled with some theoret-
ical arguments and corresponding numerical simula-
tions, the situation seems somewhat unclear for two-
dimensional and three-dimensional fields. We will,
in particular, question the claims presented by Meakin
Ž .1987 that walks are anomalously slow for two-di-
mensional multifractal fields.

We therefore consider the simplest case of cope-
pods diffusion in a frozen field of phytoplankton, i.e.
we will neglect the feedback from the grazing to the
concentration of the phytoplankton. In other words,
we consider ‘passive’ walkers instead of ‘active’

Ž .walkers e.g., Lam, 1995 , the walk of the latter
modifies the medium. On the other hand, turbulence
signature will be only directly considered in the
multifractal distribution of the phytoplankton, al-
though the direct action of turbulence to the diffu-
sion of zooplankton could be considered as being
included in the definition of the diffusivity of the
zooplankton generated by the phytoplankton. How-

ever, we will not discuss this issue in the present
paper.

Finally, the diffusivity of the zooplankton gener-
ated by the phytoplankton will be defined by rather
simple considerations: due to grazing activity, cope-
pods should diffuse slower and slower as the phyto-
plankton concentration is higher and higher. So, this
corresponds to taking diffusivity equal to negative
powers of phytoplankton concentration. More gener-
ally, fractional integrations of negative powers of
phytoplankton concentration could be considered. For
the sake of simplicity, as well as for a comparison

Ž .with one-dimensional results Lovejoy et al., 1996 ,
we will consider the inverse of a multifractal field
considered as describing the phytoplankton concen-
tration r:

1
ks 22Ž .

r

3.3. Discretization: the master equation

As soon as the diffusivity is non-homogeneous,
Žthere is no longer a known analytical solution in

Ž ..contrast to Eq. 16 . However, one can proceed
Žnumerical simulations on a regular lattice in our

.case a two-dimensional one , by considering the
evolution of the probability of finding particles on a

Ž .given pixel see Fig. 7 for an illustration , i.e. of the
Žprobability density integrated over this pixel Eqs.

Ž . Ž ..14 and 15 . The corresponding master equation is
Žthe following for the site o surrounded by N pixels

..i, Ns4 for ds2 :
NE

P sy k P yP 23Ž . Ž .Ýi , t o , i i , t o , t
Et is1

where k is the mean diffusivity at the interface ofo, i

the two sites o and i which can be estimated by:
k qko i

k s 24Ž .o , i 2

In order to obtain a finite time difference equation it
is interesting to choose D t, the time lag, as being the
average local diffusivity time, i.e.:

D t 1
25Ž .N2h

kÝ o , i
is1
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Fig. 7. The diffusion model. These schemes shows the pixels i where the copepod can go, starting from the pixel o in function of time t,
tq1, tq2.

Ž .h is the mesh size which yields the following
discretized equation:

N

P yP sy P yP 26Ž . Ž .Ýo , tqD t o , t i™ o , t o™ i , t
is1

P is the probability that the copepod moves fromo™ i

o towards i such as:

P sT PP 27Ž .o™ i o™ i Žo , t .

and T is the ‘normalized’ transition rate from oo™ i
Ž .towards i probability during diffusivity time :

ko , i
T sT s 28Ž .o™ i i™ o N

kÝ o , i
is1

It is important to note that in this framework, the
physical time is not proportional to the number of
steps, but corresponds to the sum of the local times
Ž Ž ..Eq. 25 . The probability of finding a particle at

Ž .location x at time t will be estimated by an
ensemble of the average of series of a unique particle

Ž .walk X t , i.e.:

² :p x ,t sp X t sx s d X t yx 29Ž . Ž . Ž . Ž .Ž . Ž .
and conversely the indicator of the particle location
Ž Ž Ž . ..d X t yx is ruled by the discrete master equa-

Ž Ž .. Ž .tion Eq. 26 with P s1 and P s0 and itso, t i, t

probability P to move from the site o to the siteo™ i, t

i is therefore merely given by the transition rate
Ž Ž ..T Eq. 28 . This corresponds to defining theo™ i

arrival site according to the outcome of a random
variable having N possible outcomes, their respec-
tive probability being given by the normalized transi-
tion rate.

3.4. Characterization of the particle diffusion

A standard way of characterizing particle diffu-
sion corresponds to estimating the so called fractal

Ž . Ždimension of their walks d . It measures the aver-w
.age space occupation degree by their walks. It is the

Ž .mass scaling exponent of the root mean square
Ž . ² 2:r.m.s. distance R travelled by particles in time:

d w

22² :R A t 30Ž .
If these walks are straight lines d s1, whereasw

for the Brownian motion d s2 which correspondsw

to the fact that Brownian walks are dense in the
Ž .plane e.g., Gouyet, 1992 , i.e. to each double point

Ž .there corresponds a non-visited site see Figs. 8–10 .
If d -2, the diffusion is anomalously fast andw

corresponds to a ‘super-diffusivity’. Conversely, for
d )2, the diffusion is anomalously slow and corre-w

sponds to a ‘sub-diffusivity’.
It is important to consider the limitation as well as

the interest of this critical exponent for multifractal
Ž .and fractal diffusivity. Indeed, in this case, it can
be expected that the characterization of the walk will

Ž .require an infinite hierarchy of exponents rather
than a unique one. Nevertheless, it is already impor-
tant to estimate this behaviour of the r.m.s. walk.
Furthermore, some theoretical results, which are ob-
tained from multifractal diffusivities on uni-dimen-

Žsional space Havlin and Ben-Avraham, 1987; Silas
.et al., 1993; Lovejoy et al., 1996 need to be tested

on higher dimensions.
ŽIndeed, it has first been shown Machta, 1981;

. Ž .Zwanzig, 1982 that in the case of local i.i.d.
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Fig. 8. Near constancy of the diffusion exponent S and corre-
sponding fractal dimension of the walk d . The two-dimensionalw

multifractal plankton fields were simulated on 1024=1024 pixels
and correspond to conservative universal multifractal fields having

Ž .been Gaussian generated Hs0, a s2, lognormal . Considering
15 values of C regularly distributed between 0 and 1. For each1

value of C , 100 plankton fields were simulated, and for each1
Ž .plankton field 350 particle copepod diffusions were simulated

Ž .yielding reasonable estimates of the scaling exponent Ss 2rdw

fractal dimension of the walks S is not significantly different to 1
and does not display obvious trends related to increasing C : S1

oscillates between S s0.9231 and S s1.0000 with S smin max mean

0.9664.

diffusivities on a uni-dimensional space, the effective
diffusivity of a walk is merely the harmonic mean of
the diffusivities of the N distinct visited sites.

N1
y1 y1k A k 31Ž .Ýeff iN is1

Considering the diffusivity as the inverse of the
Ž Ž ..phytoplankton concentration Eq. 22 , it merely

states that the concentrations of the visited sites
summed up to yield the effective phytoplankton con-
centration r .eff

Ž .The implications of Eq. 31 have been consid-
Ž .ered Weissman and Havlin, 1988 for uni-dimen-

Ž .sional multifractal fields. More recently Silas 1994 ,
Ž .and Lovejoy et al. 1996 inferred from

y1 K Žy1.² : ² :k A Ý r Al 32Ž . Ž .eff ,l i ,l

that:

d s2qK y1 33Ž . Ž .w

Ž . Ž Ž .K y1 being positive due to convexity of K q
Ž . Ž . . Ž .and K 0 sK 1 s0 , Eq. 33 confirms that the

Žwalk is anomalously slow as first noticed by Meakin
Ž . .1987 on bi-dimensional multifractal fields due to

Ž² 2:. Ž Ž ..Fig. 9. Curve log R s f log t . This curve corresponds to a
simulation of copepod diffusion in two-dimensional conservative
multifractal phytoplankton fields. It shows the evolution of the
distance travelled by the copepod as a function of time. The slope
of this curve is the diffusion exponent Sf1.

the fact that particles are trapped in a hierarchy of
barriers. Although this phenomenology is very ap-

Žpealing and rather clear in dimension one Lovejoy
.et al., 1996 , its generalization is not so straightfor-

ward for a dimension higher than one, for the simple
reason that particles can then wind around these
barriers, therefore the trapping is less and less effec-

Fig. 10. Visualization of the different sites visited by the copepod
in an homogeneous field. This figure, corresponding to a numeri-
cal simulation, shows clearly that in an homogeneous two-dimen-
sional field, the Brownian walk of the copepod is dense in the

² 2:plane. In this case, d s2 and then R A t.w
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tive as the topological of the medium is increasing.
In particular, we will discuss the claim of Meakin
Ž .1987 that diffusion in bi-dimensional multifractal
fields is anomalous.

On the other hand, for uni-dimensional conserva-
tive universal multifractal concentration field having

Ž .been Gaussian generated as2 ; the deviation of
the fractal dimension of the walks from the normal-

Ž .ity d s2 is proportional to the mean heterogene-w
Ž . Ž . Ž .ity of the latter C , since due to Eqs. 8 and 331

we obtain:

d y2s2C 34Ž .w 1

3.5. Numerical simulations of particle diffusion on a
two-dimensional multifractal field

First, we have checked the diffusion results found
Ž .in one dimension by Lovejoy et al. 1996 and we

have verified for small multifractal lognormal fields
about 1=512 pixels and for C between 0.03 and1

0.55 that effectively

2 2 1
Ss s s 35Ž .

d 2q2C 1qCw 1 1

Where S is the diffusion exponent.
For each value of C , 10 phytoplankton fields1

were simulated, and for each latter realization, 10
Ž .particle copepod diffusions were simulated.

Then, in order to investigate the question of parti-
cle diffusion on two-dimensional multifractal fields,
we performed numerical simulation on work stations
Ž .H.P. 9000-700 and IBM SP2 390 . The two-dimen-
sional universal multifractal phytoplankton fields
were simulated on 1024=1024 pixels; on the one
hand, conservative fields having been Gaussian gen-

Ž . Ž .erated Hs0, as2, ‘lognormal’ Fig. 9 for sys-
tematic comparison with the uni-dimensional results
Ž .Lovejoy et al., 1996 ; on the other hand non-con-

Žservative fields having been Levy generated Hs
Ž ..0.41, as1.8 ‘Log-Levy’ in order to be closer to

the observed multifractality of the phytoplankton
Ž .fields Seuront et al., 1996a .

With simulations of the conservative universal
multifractal fields having been Gaussian generated
Ž .Hs0, as2 , we tested systematically the possible
dependence of the fractal dimension of the walk on

Žthe mean heterogeneity of the plankton field as is
Ž ..the case in the unidimensional case, Eq. 34 , con-

sidering 15 values of C regularly distributed be-1

tween 0 and 1. For each value of C , 100 plankton1

fields were simulated, and for each of these fields
Ž .350 particle copepod diffusions were simulated.

The last figure was empirically observed as a yield-
ing, rather than a straight line for the curve

Ž² 2:. Ž Ž .. Ž .log R s f log t see Fig. 9 , i.e. reasonable
Ž . Ž .estimates of the scaling exponent Ss 2 r d ,w

where d is the fractal dimension of the walks. Wew

obtain estimates of d which oscillate between 2.17w
Ž . Ž .and 2.00 i.e., 0.92-1.00 , without any increasing

Ž .trend with C see Fig. 8 . We have similar results1

for the series of diffusions on non-conservative fields
having been Levy generated, although we have not
been as systematic in exploring the mean heterogene-

Ž .ity values C . It is important to note that in this1
Ž .case K y1 s`; which requires the consideration

of the associate multifractal phase transition
Ž .Schertzer and Lovejoy, 1992 in order to be fully
understood.

On the other hand, the visualizations of copepod
Ž .walks see Fig. 11 and Fig. 12 show clearly that

they are far from being as homogeneous as a Brown-
Ž .ian motion: copepods do stay longer in the scarce

regions of high phytoplanktonic concentrations,
therefore having a rather convoluted walk, although

Ž .not getting fully trapped, whereas in the wide low
phytoplankton concentration areas, they have more
linear trajectories.

Overall, it seems that the heterogeneity of the
phytoplankton concentration field has little influence

Žon the ‘mean’ scaling more exactly the r.m.s. scal-
.ing of the diffusion in dimension two. However, it

seems to induce an heterogeneity of the walk which
should be observable with the help of quantities
related to other statistical moments of the walk, e.g.:

1

qq q² :R t s Ýr 36Ž . Ž .Ž .i

where r are the elementary steps of the walk. Thisi

relation could be scaling with a full hierarchy of
fractal dimensions. One may note that these quanti-

q 12 2 q² :ties are rather different from Ýr consideredŽ .i
Ž .by Meakin 1987 and which turn out to be
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monoscaled, at least in the one dimensional case
Ž .Lovejoy et al., 1996 .

1

d wqR t A t 37Ž . Ž .

This issue is developed elsewhere. Now it is
important to compare our two-dimensional results
with the ones reported by Meakin. As mentioned

Ž .earlier, Meakin 1987 reported anomalous slow dif-
fusion with two-dimensional multifractal fields
Ž .rather similar to the p-model . However, the scaling
exponents are based on the number of steps rather
than the physical time, both being rather different in
the case of strongly inhomogeneous fields. We ob-
tain larger estimates of d when using the numberw

of steps instead of the physical time.

4. Conclusions and perspectives

We argued that the understanding and modelling
of the diffusion of copepods in highly inhomoge-
neous phytoplankton concentrations and physical
properties of the ocean require a preliminary clarifi-
cation on the diffusion of particles in a multifractal
medium.

We showed that the general phenomenology of
the latter corresponds to particles being often trapped
by hierarchies of higher and higher phytoplankton
concentrations, therefore we expect that the diffusion
is anomalously slow or ‘sub-diffusive’, in compari-
son to the normal diffusion.

For a one-dimensional medium, we checked that
Ž .the ‘mean’ scaling more exactly the r.m.s. scaling

of the walk corresponds indeed to sub-diffusivity,
and more precisely to the theoretical and numerical

Ž .results obtained by Silas et al. 1993 and Lovejoy et
Ž .al. 1996 .
However, we pointed out that the topological

dimension one is very special, since it prevents the
particles from winding around the barriers. Indeed,
we presented a series of simulations on two-dimen-
sional media which yield non-anomalous r.m.s. scal-

Žing exponents contrary to a previous claim Meakin,
.1987 . We clarified that this claim was based on an

exponent related to the number of steps, which is no
longer proportional to the physical time of the walk
in a highly inhomogeneous medium.

Therefore, the phenomenology of the diffusion is
more subtle in a higher dimension than in dimension
one: it is no longer measurable by standard consider-
ations, because the particles are never fully trapped
by high concentration spots, but rather wind around
them. This requires therefore, to go beyond a fractal
analysis with the help of a unique fractal dimension
of the walk: the characterization of the inhomogene-
ity of the walk rather requires a multifractal analysis,
i.e. the determination of a full hierarchy of fractal
dimensions.

Although it would be interesting to check numeri-
cally that diffusion in three-dimensional multifractal
fields behave the same as in two-dimensional fields,
we faced some numerical limitations: with multifrac-
tal fields no larger than 1283, we cannot obtain
asymptotical results.

In future, we will take into account the feedback
of the grazing on the concentration of phytoplankton
and then on the copepod diffusion. Later on, we will
test the direct action of turbulence on diffusion in

Fig. 11. Visualization of the different sites visited by the copepod during its grazing in a discrete lognormal multifractal phytoplankton field.
Red, yellow and green areas correspond to higher and higher phytoplankton concentrations, whereas sites visited by the copepod are

Ž .coloured in blue. The copepod is set free in a region of low phytoplankton concentrations departure . Copepod walks are clearly far from
being as homogeneous as a Brownian motion: copepods do stay longer in the regions of high phytoplankton concentrations where they have

Ž .a rather convoluted walk, although not getting fully trapped, whereas in the wide low plankton concentration areas, they have more linear
trajectories.

Fig. 12. Visualization of the different sites visited by the copepod during its grazing in a continuous log-Levy multifractal phytoplankton´
field. Blue, yellow and green areas correspond to higher and higher phytoplankton concentrations, whereas sites visited by the copepod are

Žcoloured in black. The copepod is set free in an boundary layer between regions of low and high phytoplankton concentrations centre of the
. Ž .field . As in the lognormal multifractal phytoplankton field Fig. 11 , copepod walks are clearly far from being as homogeneous as a

Brownian motion: copepods do stay longer in the regions of high phytoplankton concentrations where they have a rather convoluted walk,
Ž .although not getting fully trapped, whereas in the wide low plankton concentration areas they have more linear trajectories.
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simulating real non-frozen turbulent multifractal
fields.

Another direction of further investigations corre-
sponds to consider generalized diffusion equations
Ž .Chechkin et al., 1995 in multifractal media. These
equations are obtained by replacing standard differ-
ential operators by fractional integrations. They al-
ready yield anomalous diffusion in homogeneous
media, since the corresponding walks are no longer
Gaussian, but Levy stable. Furthermore, these equa-
tions can be used to obtain the generators of the

Ž . Žuniversal space–time cascades Marsan et al., 1996;
.Schertzer et al., 1997 . It would be therefore not

justified to only analyse the effect of the inhomo-
geneities of the latter to a diffusion ruled by the
normal diffusion equation, when these inhomo-
geneities are more directly related to the generalized
diffusion equations.

A general consequence of this paper for ecology
is that the classical way of estimating the primary
and secondary productions of the biomass only on a
large scale seem rather untenable. On the contrary,
not only do we need to understand the predator–prey
system on a wide range of scale, but this could be
achieved in the framework of multifractals. We have
highlighted the main theoretical steps to be further
undertaken, however they also suggest corresponding
developments of empirical experiments.
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