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1. Introduction

Due to their common properties with fluid turbulence financial markets are often said to
be turbulent: they display huge intermittent fluctuations at all scales. Recently, several
papers by physicists have pushed the analogy further, applying some methods of data analy-
sis used in turbulence or geophysics to financial datasets [1-11]. The common feature of
these data analyses is scaling: in both turbulence and in finance, over wide ranges the fluc-
tuations have no characteristic scales, leading to scaling statistics. In both cases the first the-
ories proposed were thus scaling and homogeneous, presenting fluctuations at all scales, but
no intermittency: Brownian motion in finance [12-13] and the Kolmogorov-1941 law in tur-
bulence [14], which has been modelled by a fractional Brownian motion of order 1/3 by
some authors. Later, intermittency was introduced in turbulence using scaling and intermit-
tent models, ultimately leading to multifractals. In [11] we tested a generic multifractal
process, universal multifractals, on Foreign exchange data, in order to validate this model
and estimate its parameters; here we recall the basic results we obtained and present some
new analysis.

2. Multifractal .analysis of the data

2.1 The data series and the power spectra

The data we analyze are 5 daily Foreign Exchange rates in French Franc: Swiss Franc
(CHF), German Mark (DEM), US Dollar (USD), Great Britain Pound (GBP), Japanese Yen
(JPY). Each data series extends from 1 January, 1979 to 30 November, 1993: taking into
account only the active days, we have 3680 data points for each series. In Fig. 1 we show two
data series: DEM and GBP, showing two qualitatively different behaviours. The DEM fluc-
tuations have a different aspect due to the imposed currency area allowing a maximum of 4.5
p.cent fluctuations between FRF and DEM inside the European Monetary System since 1979.
We will see that our framework helps to quantitatively characterize this difference.

For our analysis, we directly studied the fluctuations of our data. In {11] we showed that
if one studies the returns AX(t) / X(2) for a time increment 1 (where X(z) is the value of the
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exchange rate at time 7 and AX () = X(z+7) - X(1)) or the fluctuations AX(f) themsleves, there
is no important difference in the scaling exponents. First we performed a Fourier (spectral)
analysis: this is a way to estimate the scaling nature of the fluctuations, and also the relative
amplitude of each frequency. As is tipically obtained, we find the following scaling spec-
trum:

E(f)e f* (1)
where f is the frequency, ‘<’ means proportionality and B is the scaling exponent of the
power spectrum, which is found to be close to 2 (it is exactly 2 for Brownian motion). This
is shown in Fig. 2 for all the spectra, with a straight line of slope -2 for comparison.
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Fig. 1. Two of the foreign Fig. 2. Power spectra of the
exchange ‘time series which . time series, in log-log plot;
are analyzed here: GBP (up) from bottom to top: DEM,
and USD (bottom). CHF, JPY, GBP, USD. For

comparison, a continuous
line of slope of -2 is also
shown.

The power spectrum is only a second order statistic and its slope is not enough to
uniquely specify a scaling model: it gives only partial information about the statis-
tics of the process, except when gaussian. One needs the knowledge of the probabil-
ity distributions of the process, or of its statistical moments other than second order.
The usefulness of multifractal analysis is precisely in characterizing all order
moments at all scales (and hence the probability distributions at all scales) for the
validation of a scaling model. This is done in next section using structure function
scaling exponents. In the following analysis, we quickly recall the main results of
[11] before considering the GBP fluctuations in two different situations. Finally we
discuss the question of the signs of the fluctuations.

2.2 Scaling of the structure functions,
convexity and multifractality

‘Structure function analysis consists in studying the scaling behavior of fluctua-
tions for different time increments . This is done by estimating the statistical
moments of these fluctuations, which depend only on the time increment in a scaling
way (see [15]):
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where T is the fixed larger time scale of the system, C, =<|X(¢+T)-X() > is a constant
(in 1), '<>' denotes ensemble average, ¢ is the order of the moments (we take here ¢>0), and
C(q) is the scale invariant structure functions’ exponent. The average of the fluctuations cor-
responds to g=1, and H={(1) is the parameter characterizing the non-conservation of the
mean. For Brownian motion, {(1)=1/2. The second moment is essentially the Fourier trans-
form of the spectrum and is linked to the slope B of the power spectrum: B=14L(2).

We estimated {(q) as the slope of <|AX,['> vs.Tin log-log plot for all moments between
0.1 and 4.0 with a 0.1 increment. The resulting curves for the 5 data series are presented in
Figs. 3 and 4: as we discussed in [11] their nonlinear shape is a signature of multifractality.
In particular this invalidates additive models for which this function is linear, or bi-linear
(two portions of straight lines): {(¢)=¢/2 for Brownian motion; {(g)=g(h-1/2) for a fraction-
al integration of order 4 (O<h<1) of a Gaussian noise (see [16]). For Lévy and fractional
Lévy motion, we showed in [11] the following relations:

glh-1+1/0) g<o

g(q)z{q(h—l—D,/oc)+1+D, g0

(3)

where o is the characteristic exponent of the Lévy noise (0Sa<2; for a=2 one recovers
Gaussian noise) which is fractionally integrated by 4 (0<h<1; k=1 for ‘Lévy motion’),
D;is a ‘samp]ing dimension’ [17] such that N, =(T/t)® is the number of realisations
studied. The change of slope between the two straight lines is (1+D,)/c.. Here we have
1 sample and hence D =0. Even if the empirical nonlinear shapes we obtain in Fig. 3 for
C(g) could be (poorly) approximated by two lines in order to test this model, the change
of slope occurs generally at a moment larger than 2, and the empirical changes in slope
are smaller than 1/2, therefore invalidating this model for which this change (=1/ct) must
be larger than 1/2.
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Fig. 3. The functions {(q) obtained for several times series. Their nonlin-
earity indicates multifractality. The line corresponds to {(q)=q/2, obtained
for Brownian motion.
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Figure 4 shows a portion of the GBP time series: when outside the European Change
Mechanism (ECM) from 1979 to October 1990 the fluctuations have a different appearance
than those when inside the ECM from October, 1990 to October, 1992 with the imposed cur-
rency area allowing a maximum of 12 % fluctuations between FRF and GBP inside the
European Monetary System. We quantify here this visual difference using {(q) for both por-
tions of the GBP series. In these two contexts, the fluctuations are still scaling, but with scal-
ing exponents clearly different for moments larger than 1, as shown by Fig. 5. The fluctua-
tions when inside the ECM are more intermittent (more pronounced convexity of {(g),
smaller value of H={(1)); this may be due to ‘outside’ intervention from central banks in
order to keep the currencies inside the imposed margins: these interventions correspond to
superimposed intermittency, in addition to the ‘natural’ intermittency which would be
obtained if the system had no interference. The same behavior is visible for DEM (for which
there is a maximum of 4.5 % fluctuations since 1979): its function {(g) has a more convex
shape than of CHF or USD.

2.3 Universal multifractal parameters

Multiplicative cascade models [17] are rather generic multifractal processes. If one den-
sifies (in scales) the cascade, one obtains continuous cascade models [17]; recently the term
infinitely divisible cascades (refering to the infinitely divisible probability distributions) has
also been used [18]. Choosing different infinitely divisible laws, the following models were
obtained in the turbulence litterature: log-normal [19-21], log-Lévy [17, 22-25], log-Gamma
[26], log-Poisson [27, 18]. Although all these models share in common a weak universality
(i.e. few relevant parameters define the infinite hierarchy of exponents), only those having
a Lévy generator correspond to a strong universality (as discussed in {25]): within the mul-
tiplicative framework, they are the only stable (and attractive) models, i.e. the only models
which are stable under the operation of raising to various powers, or convolution with dif-
ferent realizations of similar processes. Multiplicative models are mathematically more pre-
cise formulations of the (vague) law of “proportionnal effects” which was once believed to
generally lead to lognormal distributions. The development of multifractals has shown that
the universality class is larger; encomapassing Lévy generators, with gaussian only as a spe-
cial case. The following form is then obtained for {(g):
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Fig. 4. A portion of the GBP Fig. 5. The function {(q)
time series showing the period obtained for GBP when out-
of two years during which it side the ECM (full dots) or
was inside the ECM. This peri- inside the ECM (open dots).
od ends with an abrupt fall.

153



—_ — Cl_ a _
{(g)=qH a_l(q q)

4
where C, is the fractal codimension of the mean of the process (0<C,<d=1 for a 1-D
dataset), and o is the Lévy index (of the generator, which is the log of the multiplicative
process); we have 0<o<2. The log-normal model corresponds to a=2. We may emphasize
here the difference of this model with additive Lévy models: for universal multifractals, the
Lévy distribution is not assumed for the difference of the price, but for its generator, the log
of the (absolute) difference. We estimated these 3 parameters in [11], using for o a technique
~ taking into account the non-analycity of £(g) at g=0 (see Table 1).

The values reported in Table 1 show that H=0.60+0.03 is quite stable for the different
series, as well as =2.10+0.05 (the latter is given for information and is not a fundamental
parameter of the model) whereas C; is more variable: C,=0.05+0.02 and o seems to be less
precisely estimated, being approximatively a=1.5+0.35. This last parameter needs in fact
more data (with for example intraday Foreign exchange data) to be more accurately esti-
mated; with more data, it is possible that the estimates of this parameter for different cur-
rencies will be closer to the mean value 1.5.

Series H={(1) B=1+4(2)  C o
CHF 0.56 2.07 0.03 1.75
DEM 0.63 2.05 0.08 1.6
GBP 0.60 2.13 0.04 1.26
JPY 0.60 2.15 0.05 1.15
USD 0.58 2.06 0.05 1.87

Table 1. The parameters H, C; and o estimated for the five time series,
with a method explained in Schmitt et al (1997). The value of B=1+{(2)
is also given, as estimated from the slope of the power spectrum (this
last value is linked to the three others).

2.4 The sign of the fluctuations

Up until now our analysis contains information on the statistics (at all scales) of the
amplitude of the fluctuations in the time series. In this short section we focus on the sign of
these fluctuations, an important quantity if we want to model financial time series. Lie cas-
cades [28] or at least complexe cascades should be used in order to properly introduce the
sign information into a multiplicative cascade. Here as a first step, we simply transform our
series into a series of signs +1 or -1 of the (non-overlapping) fluctuations: s.(f)=sign[AX,(1)].
We then test here mainly some possible correlations in these series of signs, using the cor-
relation function C(T)=<s,(?)s.(¢+T)>. We compute this function for each series and for var-
ious values of the increment T (not too large because there are N/t different signed data,
where N is the original size of the series). A significant correlation in the signs (a power law
or exponential decrease for example) indicates a structure and the necessity to modeling the
signs with a well suited algorithm. This is shown in Fig. 6 for the USD series, for =1 and
3: there is a flat correlation function oscillating randomly around 0, which seems to indicate
that we can model the signs in a simple random non-correlated manner. The same is
obtained for the other time series, except JPY which contains a structure (see Fig. 7) which
therefore need more detailed analysis to be properly modelized. ’
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3. Conclusion and discussion

We analyzed with multifractal analysis techniques several foreign exchange rates data
which we compared and contrasted with geophysical turbulence. Some of the currencies are
very rarely traded as JPY/FRF, others belong to the European Monetary System and some
are frequently traded (‘liquid’) as USD/FRF and GBP/FRF. Despite these differences, all the
series showed multifractality in their statistics, with nonlinear and convex shape of their
structure function exponents {(g). The currencies belonging to ECM (DEM/FRF and
GBP/FRF during two years) displayed a rather different shape for {(g) than other currencies
which have no limit in their variation: this corresponds to new intermittency introduced in
the system in order to keep the fluctuations inside some margins. The fluctuations of the dif-
ferent series rather correspond to a universal multifractal model: the parameters obtained in
this framework are not far from each other, wich may indicate a unique limit process corre-
sponding to the ‘trading currency’ process. This, with the sign information we obtained here,
can be used to produce ‘synthetic’ simulated multifractal financial time series, with an algo-
rithm which is numerically implemented in [29).

We must finally underline an important point behind this analysis: multifractal fields
present long range correlations, coming from the embedding structure of multiplicative cas-
cades which are used to produce them. Therefore the time series are not Markovian (more
precisely they do not correspond to a finite Markov chain) and the long range interrelations
which they display can be used for predictability purposes (see [30] in another related con-
text): the general approach corresponds to use the past of the process in order to compute in
an optimal manner the generator defined by this past, as well as its statistical influence on
the future.
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Fig. 6. Correlation function Fig. 7. Correlation function
of the signs of USD time of the signs of JPY time
series, for =1 (continuous series, for 1=1 (continuous
line) and 1=3 (dotted line): line) and 1=3 (dotted line): a
no trend is visible. weak trend is visible.
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