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We consider the structure functions S(q)(τ ), i.e. the moments of order q of the incre-
ments X(t+ τ )−X(t) of the Foreign Exchange rate X(t) which give clear evidence of
scaling (S(q)(τ ) ∝ τζ(q)). We demonstrate that the nonlinearity of the observed scaling
exponent ζ(q) is incompatible with monofractal additive stochastic models usually intro-
duced in finance: Brownian motion, Levy processes and their truncated versions. This
nonlinearity correspond to multifractal intermittency yielded by multiplicative processes.
The non-analycity of ζ(q) corresponds to universal multifractals, which are furthermore
able to produce “hyperbolic” pdf tails with an exponent qD > 2. We argue that it is
necessary to introduce stochastic evolution equations which are compatible with this
multifractal behaviour.

1. The use of structure functions to discriminate models

Financial markets display some common properties with fluid turbulence, and their
fluctuations are often characterized as being “turbulent”. Indeed, as for fluid turbu-
lent fluctuations, financial fluctuations display intermittency at all scales. In fluid
turbulence, a cascade of energy flux is known to occur from the large scale of in-
jection to the small scales of dissipation. Since the 1980’s, this cascade is mainly
modeled by multiplicative cascades,1 generically leading to multifractal fields.2,3

In finance, the picture of a cascade of information flowing from large-scale in-
vestors to small scale ones has been proposed,4−6 and several authors showed em-
pirically that the fluctuations of various financial time series possess multifractal
statistics.6−9 This corresponds to abandoning the classical Brownian motion pic-
ture, and even all other models based on additive processes: fractionnal Brownian
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2 Multifractal and scaling properties in finance

motion, Lévy and truncated Lévy processes. Here we show how structure function
analysis is a simple yet powerful tool in comparing the different models.

Assuming statistical time translational invariance, the structure functios S(q)(τ),
i.e. the statistical moments of the increment of the Foreign Exchange rate X(t) will
depend only on the time lag τ , and according to a power law if the process is scaling:

S(q)(τ) =< |X(t+ τ)−X(t)|q >∼ S(q)(T )
( τ
T

)ζ(q)
(1.1)

where T is the fixed largest time scale of the system, < . > denotes statistical average
(for non-overlapping increments of length τ), q is the order of the moment (we take
here q > 0), and ζ(q) is the scale invariant structure function exponent. Structure
function analysis corresponds in fact to studying “generalized” average volatilities
at scale τ , since only moments of order 1 or 2 are usually used to define the volatility.
Furthermore, the present analysis consists in analysing this generalized volatility for
all time scales.

The average of the fluctuations correspond to q = 1, and H = ζ(1) is the so-
called “Hurst” exponent characterizing the scaling non-conservation of the mean.
The second moment is linked to the slope β of the Fourier power spectrum: β =
1+ζ(2). The main property of a multifractal processes is that it is characterized by
a nonlinear ζ(q) function.10 This function is convex, being proportionnal to the sec-
ond Laplace characteristic function of the generator of the cascade.1,3 Multifractals
are the generic result of multiplicative cascades. A continuous-scale limit of such
processes leads to the family of log-infinitely divisible distributions, among which
are the universal multifractals,1 which have a normal or Levy generator, and for
which:

ζ(q) = qH − C1

α− 1
(qα − q) (1.2)

where C1 ≤ d is an intermittency parameter, d is the dimension of the space (here
thus d = 1) and 0 < α ≤ 2 is the basic parameter which characterizes the process;
α = 2 corresponds to the log-normal distribution (a normal generator).

On the other hand, additive models correspond to a linear or bilinear ζ(q).
Indeed, for Brownian motion (Bm) ζ(q) = q/2, and for fractionnal Brownian motion
(fBm) ζ(q) = qH, for a fractionnal integration of order H+1/2 of a Gaussian noise.
Thus a purely linear ζ(q) function indicates Bm or fBm. We showed numerically
in Ref.6 that several ARCH and GARCH models quickly converge to giving ζ(q) =
q/2. We obtained also a bilinear expression for the quite popular Lévy-stable and
truncated Lévy-stable processes11−13: ζ(q) = qH forq < 1/H and = 1 for q ≥ 1/H,
where H = 1/α, and α is the Lévy index (0 ≤ α ≤ 2). For q ≥ 1/H the above
expression is valid for one realization; when the number of realization increases,
because of the divergence of moments of order α of Lévy processes, ζ(q) diverges
(but its estimate on finite samples is always finite1,3).

It is important to note that multiplicative cascades generically produce also
hyperbolic tails leading to divergence of moments of order qD which could be larger
than 2,1 whereas additive processes are bounded to qD < 2. Equation (1.2) is a
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Figure 1: Left: Scaling of the structure functions in log-log plot for moments of
order 0.5, 1., 1.5, 2. and 2.5 (from top to bottom); Right: the resulting scaling
exponent ζ(q) which is clearly nonlinear (full dots), compared to the straight line
qζ(1) (dotted line). Also shown is the convex function qζ(1) − ζ(q) (open dots),
with a universal multifractal fit (continuous line).

nonlinear behaviour obtained for q ≤ qD, whereas for q > qD, ζ(q) is linear, with a
slope depending on the number of realizations studied.2

2. Multifractal data analysis: an example

We show here as a case study the analysis of a daily US Dollar/French Franc
exchange rate from 1 January 1979 to 30 November 1993. This corresponds to 3680
data points, and a scaling of nearly three orders of magnitude (but the analysis
of intraday data showed that the scaling of the financial fluctuations can go from
several minutes to several years).

In Fig. 1a we show the structure functions in log-log plot for different orders of
moments. The straight lines show that the scaling of Eq.(1) is very well respected;
we repeated this for moments up to 4.0, with a 0.1 increment; only for moments
larger than about 4.0, the scaling begins to be broken because of the insufficient
amount of data analyzed. The resulting ζ(q) function is shown in Fig. 1b: there is a
clear nonlinearity; we also directly estimated the scaling exponent of the nonlinear
term τ qH/ < (∆Xτ )q >, which is a convex function plotted on the same graph. We
obtain the following values for several currencies (slightly different values for each
currency were obtained, but nevertheless in each case the resulting ζ(q) function
was nonlinear): H = .58± 0.03 and ζ(2) = 1.06± 0.05, and using specific analysis
techniques, C1 = .05 ± .03 and α = 1.5 ± .3. We also obtained qD = 3.0 ± .5, a
value which is confirmed by an analysis on a much larger dataset.14 This seems to
indicate that, in general, FX data are characterized by multifractal processes with a
hyperbolic slope of 3; a structure function analysis does indeed display a nonlinear
curve up to the third order moment, and then a straight line with a slope linear in
− lnN , where N is the number of datapoints used for the statistical estimates.6

The main application of this new approach is predictability: past and present
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values of the time series can be exploited in order to provide an optimal forecast.
This contradicts the Efficient Market Hypothesis, which relies on memoryless mod-
els. As with all symmetry principles, in the absence of specific, strong scale breaking
mechanisms, we must assume that the scaling is unbroken and that the small em-
pirical deviations are due to poor statistics. The observed nonlinearity of ζ(q) thus
demonstrates that it is multifractal. Nevertheless, proposals have been made to
either intentionally15 or inadvertently16 drop the scaling assumption and consider
complex transient (”cross-over”) regimes of models which are only monoscaling
in the limit. However, let us emphasis that this corresponds to come back to a
non-scaling framework, and by consequence to face many theoretical and practical
difficulties.
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