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In the 1970’s it was found that; for low frequencies (< 10 Hz), speech is scaling: it has no
characteristic time scale. Now such scale invariance is associated with multiscaling statistics,
and multifractal structures. Just as Gaussian noises frequently arise because they are generically
produced by sums of many independent noise processes, scaling noises have an analogous
universal behavior arising from nonlinear mixing of processes. We show that low frequency
speech is consistent with these ideas, and use the measured parameters to produce stochastic
speech simulations which are strikingly similar to real speech.

Although statistical methods such as spectrograms
have frequently been applied to studying the prop-
erties of speech at audible frequencies, the study
of low frequency components has been badly ne-
glected. An important exception was Voss & Clarke
[1975, 1978] (see also Pickover & Khorasani [1986]),
who found that over the range =~ 10 Hz to at least
10~3 Hz, the spectrum had the scaling form f=#
with f the frequency, and 8 < 1. Scaling ideas
now center on multifractals which involve an entire
exponent function (rather than the single value 3).
Furthermore, attractive (stable) universality classes
exist for multifractal processes [Schertzer & Love-
joy, 1987, 1989, 1991]. For the same reason that —
irrespective of the detailed generating mechanism
— Gaussians occur in a wide variety of noise pro-
cesses, in scaling noises, special types of (universal)
multifractals naturally occur. When present, Gaus-
sian distributions greatly simplify statistical analy-
sis since they require only two basic parameters (the
mean and variance) to specify the entire probability
law. Universal multifractals play the same role in

scaling processes; with three parameters the entire
(infinite hierarchy) of scaling exponents is speci-
fied. Indeed, universal multifractals have been em-
pirically found in many scaling systems; turbulent
velocity and temperature fields [Schertzer et al.,
1991; Schmitt et al., 1992], cloud radiances [Gabriel
et al., 1988; Lovejoy & Schertzer, 1990; Tessier
et al., 1992], landscape topography [Lavallée et al.,
1992], ocean surfaces [Lavallée et al., 1991a] and
hadron jets [Brax & Peschansky, 1991; Ratti et al.,
1991].

To test these ideas on speech, recordings 890
seconds long were made using a standard eight-bit
digitizer at 5.5 kHz. Seventeen samples of speech
were studied including dictation and song, conversa-
tion, and subjects of both sexes, different ages, and
speaking the French and English languages. Be-
cause of the physiology and anatomy of the phona-
tory apparatus, speech essentially consists of high
frequency wave packets varying at much lower fre-
quencies corresponding to phonemes, syllables, sen-
tences and paragraphs. The low frequencies are
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essentially voluntary, involving significant muscu-
contraction and energy expenditure, whereas the
high frequencies are primarily caused by small vari-
ations of the oscillations of the vocal chords and
effects of minute valve action. At low frequencies,
the only significant physiologically constrained time
scale is at about 0.1 Hz associated with respi-
ration. The cerebellum plays a critical role in
the motor control of the low frequencies whereas
the motor cortex does so for higher frequencies.
The two regimes are therefore very different: us-
ing spectral analysis, we found that the transition
(spectral minimum) occurs at about 10 Hz which
separates the high frequency spectral bump (falling
off quickly above 1 kHz) from the low frequency
power law form discussed below. We concentrated
on the low frequency part because it was apparently
the simplest to analyze and model while having
a greater neuropsychological significance due to
its dependence upon higher order nonautomatic
processing.

To isolate the low frequencies, we digitally low-
pass filtered and resampled the signal at 9.8 Hz
[Fig. 1(a)]. Visually, the signal is plausibly mul-
tifractal: it has structures at all scales as well as
some very large values (the .extreme singularities);
for comparison, Fig. 1(b) shows a universal mul-
tifractal simulation. If the low frequency signal
(A) is the outcome of a scale invariant speech pro-
cess, the statistical properties of the fluctuations
(AA) over various time intervals (At) will be re-
lated to each other by power laws of the scale ratios.
Consider the fluctuations (AA,) at scale ratio A
obtained by degrading the original signal to resolu-
tion At = 7/A (i.e. its resolution is A times smaller
than that of the entire signal, duration 7). Its av-
erage value will depend on the resolution. It is
therefore convenient to introduce a resolution inde-
pendent multifractal speech process () with the
property () = constant (“{ )” indicates statistical
averaging):

AAy @A H (1)
where H quantifies the resolution dependence of
the mean: (JAA,|) = A~H. The scaling A\~ is
equivalent to a “fractional integration” of order H,
(a power law filter by f~#). Introducing K4(q),
K (q) to characterize the scaling of the gth statistical
moment of A, ¢ respectively, we obtain

(1A45]7) = AFAW) = (Gh)A~eH = yKl-aH - (g

Resolution independence of (p,) implies that
K(1) = 0, hence K 4(1) = —H. The spectral expo-
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Fig. 1. (a) A = 100 seconds long section of “As You Like

It" filtered and resampled at 9.8 Hz. Note the extreme
intermittency and asymmetry.
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Fig. 1. (b} A stochastic universal multifractal simulation
with H = —0.37, Cy = 0.1, @ = 2, produced as described in
Wilson et al. [1991]; the variability is plausibly of the same
type as Fig. 1(a), changing the random seed in the Monte
Carlo simulation produces a different mock speech record.

nent § mentioned above is given by § =1 — K4(2)
(the energy spectrum is a second-order statistic).
“Mono” scaling behaviour occurs if ¢, has no res-
olution dependence, {¢3) = constant for all ¢ (not
just ¢ = 1), K(q) = 0 and K4(q) = —qH, f =
1 + 2H; otherwise ¢, is multiscaling and K(gq) is
convex. If we consider a multiscaling time series,
then regions that exceed an amplitude threshold
will have fractal dimensions that decrease with in-
creasing threshold; intense parts of the signal will
be distributed more sparsely in time than weaker
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ones. In contrast, a monoscaling signal will have
dimensions which are independent of the thres-
hold. Figure 2 shows that the scaling (Eq. 2) is ac-
curately followed over the entire range of available
scales (with a slight bump possibly associated with
the respiratory frequency at A =~ 200), and Fig. 3
shows the K(g) obtained by regression on Fig. 2,
after removing the term ¢H (H = —0.37+0.01). It
is clearly convex; low frequency speech is therefore
multiscaling.
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Fig. 2. The (log) sum over all disjoint intervals of the

gth moment of the absolute speech fluctuation (L|AAA|T &
AFala)—(a=1)) a5 a function of the (log) scale ratio A. From
top to bottom ¢ = 1.5, 1.1, 0.9, 0.7, 0.5, 0.3, 0.1. Ka(qg) is
determined from the slope. Note that the multiple scaling is
well followed over the entire range corresponding te = 10 Hz
to 10™° He.
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Fig. 3. The empirical K(g) function obtained by subtract-

ing ¢ K 4(1) from the slopes of Fig. 2, with the optimum piece-
wise quadratic/linear fit (Eq. 4) with C; = 0.09.

If  is the result of nonlinear “mixing” (interac-
tion) of many different processes [Schertzer & Love-
joy, 1987, 1989; Fan, 1989], most of the details of
the process will be irrelevant and we may expect it
to have the following universal form:

K(q)= acil T(d* - q), (3)
where C is the codimension of the mean of ¢ (in
the one-dimensional time series here, 0 < C; <1
and the corresponding fractal dimension of the
mean is 1 — C). It represents the best monofractal
approximation to the mean. « is the Levy exponent
and characterizes the degree of multifractality.

It is fairly straightforward to estimate Cy; this
can be done from, K'(1) = C; (yielding C; =
0.09 £+ 0.01). « is more difficult to estimate since it
determines the concavity, and hence deviation from
monofractality; @ = 2 is the maximum, o = 0,
the monofractal (minimum). A new method for
estimating «, called the “Double Trace Moment”
technique [Schertzer et al, 1991; Lavallée, 1991],
indicates that @ = 1.9540.1, i.e. near its maximum:
indeed, a quadratic (¢ = 2) fit (Fig. 3) for the
range 0 < ¢ < 3, yields an RMS error of only
40.02. The reason for this range restriction is that,
above a critical value g., the empirical moments are
no longer accurate estimates of the true (ensemble
averaged ) moments: we will expect a discontinuity
in the slope and a linear behavior for the measured
K(q) for g < q. (as observed in Fig. 3 for ¢ > 3). ¢.
can arise through two quite distinct causes (which
mimic multifractal “phase transitions” [Schertzer

et al., 1992)):

(a) there is undersampling [Lavallée, 1991; Lavallée
et al., 1991]: any finite sample has a maximum
order of singularity, hence all moments ¢ > ¢
will be dominated by this value; this yields a
second order phase transition;

(b) there is divergence of moments; for ¢ > ¢p,
the theoretical K (g¢) is infinite, and we detect
a “spurious” scaling again characterized by a
linear K(g) for ¢ > ¢p; this yields a first order
phase transition.

For a single sample in one dimension (D = 1),
we obtain (o = 2): ¢, = Cl_lﬂ, @1 = Cy! (hence
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¢s < q1). The overall empirical moments will follow:

1/2

Ci(g* - q), g<C; "%,

K@=1 ! (4)
1/2 -1/2
g2C? _c)—1, ¢>CiV2.

Using C; = 0.09, we find ¢. = ¢, = 3.30:
Figure 3 shows that an excellent fit is obtained over
the entire range 0 < ¢ < 10 (the maximum dis-
tance between the theoretical and empirical curves
is 0.06).

For the other series we investigated, results
were generally similar; a near 2, C; in the range
0.09 to 0.18 (a selection of opera singing yield-
ing the largest). Just as many different nonscaling
processes can give rise to (Guassian noises, so many
different scaling mechanisms for speech can give
rise to universal multifractals with the same ba-
sic parameters. Traditional analysis methods have
concentrated on the high frequency part of the
spectrum using spectrograms and other methods
sensitive to small differences in signal statistics: In
contrast the universality parameters here are ex-
tremely insensitive to these differences. For this
very reason, they quantify a very fundamental as-
pect of the speech process and help us rule out
models of speech which break the scaling by intro-
ducing specific processes at well-defined time scales.
Knowledge that low frequency speech fits into these
broad universal categories will be important in im-
proving our understanding of the high frequencies
too. It also suggests other analyses — for example,
the scaling of the distribution of tagged phomenes,
syllables etc. that could be performed in the future.
Finally, to demonstrate the usefulness of our char-
acterization, we used continuous cascade processes
[Schertzer & Lovejoy, 1987, 1989; Fan, 1989; Wilson
et al., 1991] calibrated with the measured parame-
ters, to make simulated low frequency speech signals
[see Fig. 2(b)]. These could provide the basis for full
simulations by providing a signal to modulate the
higher frequencies.
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