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ABSTRACT

We argue that geographic and geophysical fields are generally multifractal (characterized
by an infinite hierarchy of fractal dimensions) and that inconsistencies are inevitable when
they are forced into narrow geometric frameworks involving single fractal dimensions. As
an example, we show how commonly used monofractal relationships between fractal
dimensions and spectral and variogram exponents break down for multifractals. We then
review some results on multifractal processes showing how they lead to universal multi-
fractals with generators characterized by the three basic parameters H, Cy, and o. The
parameter H measures the degree of nonstationarity of the process, C; is the codimension
that characterizes the sparseness—inhomogeneity of the mean of the process, and o charac-
terizes the degree of multifractality; o = 0 is monofractal, o = 2 is the maximum.
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We then describe a new Double Trace Moments (DTM) technique, which is the first
data-analysis technique specifically designed to estimate these parameters. We apply the
technique to digital elevation maps of Deadman's Butte (50-m resolution) and French
topography (1-km reselution), finding roughly compatible estimates of the multifractal
index o0 = 1.9+ 0.1 and 1.7 £ 0.1, respectively (close to its maximum). Interestingly, C; =
0.045 + 0.005 and C; = 0.075 * 0.005, respectively, which indicate that the mean of the
process is not far from the space-filling value 0. We also find H = 1/2, and we use dimen-
sional analysis to suggest possible physical explanations. The low values of C; show why
monefractal models such as fractional Brownian motion may give reasonable results for
the mean of the topography, but are poor models for the extremes; multifractal effects (that
is, large sparse fluctuations) become important rapidly for high-order moments and for
regions at very high (or very low) altitudes. Finally, we produce simulations of topography
with the observed multifractal parameters,

INTRODUCTION
Scale Invariance and Nonlinear Variability of Geographical Data

Geophysical and geographical systems are characterized by extreme spatial and temporal
variability, fractal structures spanning wide ranges of scale, and nonlinear dynamics. This
ubiquitous nonlinear variability is increasingly being recognized as a central geophysical
and geographical problem (see, for example, the preface and various contributions to
Schertzer and Lovejoy, 1991a). The explosion of interest in chaos, fractals, and scaling,
and, more recently, multifractals and multiscaling, has led to rapid advances in under-
standing this variability. The most promising of the new developments for geophysics and
geography has undoubtedly been in scaling ideas that are now helping to provide a unified
picture of atmospheric and other geophysical systems. Indeed, for some time we have pro-
posed that scale invariance is a symmetry principle capable of unifying the earth sciences.

Unfortunately, the current honeymoon between scaling and geophysics has been
dominated by restrictive monofractal ideas associated with fractal sets and the obsession
with unique scaling exponents (especially the fractal dimension). Furthermore, only very
special types of scale-changing operations have been considered; only self-similar or
occasionally self-affine transformations have been employed. In the former case, the small
scales are reduced carbon copies of the large, and in the latter case, “squashing” or “com-
pression” along coordinate axes is also permitted. With the development of multifractals
and generalized scale invariance (GSI) (Schertzer and Lovejoy, 1983, 1985), it is now
clear that the types of scaling can be much broader. In particular, scale-invariant systems
can now include fields rather than sets (that is, multifractal measures), and the types of
possible scale transformations encompass not only differential stratification (self-affinity)
but also rotation and anisctropy which varies from one place to another. A further step
away from geometry toward a dynamical formalism of scale invariance was the recogni-
tion that multifractals possess stable and attractive universal generators (Schertzer and
Lovejoy, 1987, 1989a, 1989b; Schertzer et al., 1988, 1991). This greatly simplifies the
analysis and modeling of multifractals by replacing the infinite number of multifractal
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exponents by a small number of dynamically significant parameters. In the following, we
illustrate some of these ideas by estimating the fundamental multifractal index o, using a
digital elevation model and a new data analysis technique called double trace moments
(DTM) (Lavallée, 1991). We then use the estimated parameters to produce multifractal
simulations of topography. Our results help explain both the successes and limitations of
the monofractal models: although we find a nearly maximum degree of multifractality, the
mean of the process is not very sparse; hence multifractal effects will not be too noticeable
for low-order statistics; they will, however, dominate the behavior of the extremes, such as
the high-order moments or very high/low-altitude regions.

Scaling, Fractals, and Topography

The problem of adequately conceptualizing and representing the earth's topography
(for example, coastlines and rivers) has a long history. It includes Perrin's (1913) discus-
sion of the “tangentless” coastline of Brittany and Steinhaus's (1954) discussion of the
nonrectifiable nature of rivers.! The scaling nature of the topography has also been known
for some time. In a paper entitled “A Remarkable Feature of the Earth’s Topography,”
Venig-Meinesz (1951) found a power-law spectrum over wide ranges and correctly recog-
nized its fundamental significance. Bell (1975) showed that Venig-Meinisz’s spectral scal-
ing of the altitude of the topography extends from planetary scales at least down to 0.15
km; using satellite data, Bills and Kobrick (1985) showed that Venus, Mars, and the moon
have very similar scaling exponents to the earth. Similarly, using yardsticks of varying
lengths, Richardson (1961) found various coastlines to be scaling over wide ranges and
determined the relevant exponents. Mandelbrot (1967) related Richardson's exponents to
fractal dimensions.

A new impetus for fractal analyses of topography came from fractional Brownian
motion models of terrain (Mandelbrot 1975, 1977; Voss, 1983; Fournier et al., 1982;
Clarke, 1988), which produced strikingly realistic looking models of mountains. However,
in spite of the now mushrooming interest in the field, direct estimates of fractal dimen-
sions of various topographic sets (for example, lines of constant altitude) have not been
numerous. The main examples of which we are aware are Goodchild (1980), Aviles et al.
(1987), Okubo and Aki (1987), and Turcotte (1989) (who also pointed out some apparent
contradictions in the monofractal anaiyscs).2 See also Klinkenberg and Goodchild (1992)
and Klinkenberg and Clarke (1992) for reviews and discussions. Other relevant direct

I« The left bank of the Vistula, when measured with increased precision would furnish lengths ten, hundred, and
even a thousand times as great as the length read off a school map. A statement nearly adequate to reality would
be to call most arcs encountered in nature not rectifiable. This statement is contrary to the belief that not rectifi-
able arcs are an invention of mathematicians and that natural arcs are rectifiable: it is the opposite that is true...”
(Steinhaus, 1954). In a popular book (Steinhaus, 1962), the argument is repeated and as an illustration of the
point, a (fractal) Peano curve is shown.

2We specifically exclude variogram methods such as those reported in Mark and Aronson (1984) and Rees and
Muller (1990) or spectral exponent methods such as those reported in Gilbert (1989) and Mareschal (1989), since
both methods measure different scaling exponents, neither of which are fractal dimensions. They could have
been used to infer fractal dimensions only if the topography had been monofractal rather than multifractal.
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empirical estimates of fractal dimensions of surface features are given in De Cola (1989,
1990) (the former also includes a short discussion of multifractals). The multifractal anal-
yses of topography are more recent and are found in Ladoy et al. (1990) and Lovejoy and
Schertzer (1990a), and the corresponding multifractal simulation studies are in Wilson et
al. (1991) and Sarma et al. (1990) (see Figures 8.1a and b and 8.2a and b). Other relevant
empirical multifractal analyses in geophysics are the rainfield, clouds, wind and tempera-
ture, networks, and rain measurement (Lovejoy et al., 1987; Tessier et al., 1993; Schmitt et
al., 1992a, b; Gabriel et al., 1988). For reviews, see Lovejoy and Schertzer (1988a, b,
1990b, 1991) and Schertzer and Lovejoy (1988, 1989a, b). Below, we show how a new
multifractal analysis technique called the double trace moment (the DTM technique),
when carefully applied to topographic data, enables us to estimate directly the fundamen-
tal universal multifractal parameters of topography.

Multifractals: Beyond the Geometry of Sets

A fractal is a geometrical set of points; a multifractal is a mathematical measure. When
integrated—averaged over a resolution scale, this will be a field with intensity values
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Figure 8.1(a) Schema showing how functional box counting can be used to estimate the fractal dimensions
at various thresholds T.
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defined everywhere. In geophysics and often in geography, we are rarely directly inter-
ested in sets of points. Indeed, a significant part of a map maker's skill is to find an ade-
quate way of representing various fields such as population density, altitude, depth of
ocean, temperature, and so on. To obtain sets, we typically establish thresholds and define
the set of interest (for example, an exceedance set) to comprise all the points above a
threshold, delineating them with isolines. Closer inspection shows that the relationship
between the real world and various cartographic sets is rather indirect: the remote sensor
has an intrinsic spatial-temporal resolution typically much larger than the smallest scale
of the phenomenon we seek to represent. Therefore, the very first step of analysis, as we
impose an inner scale to obtain a finite resolution field (pixel world), already involves a
fundamental symmetry breaking through averaging, smoothing, or sampling (Schertzer
and Lovejoy, 1991b). On the contrary, most geographers and geophysicists have forgotten
this important first step, and the monofractal approach exemplified by Mandelbrot (1982)
remains the general approach (see the special issue of Pure and Applied Geophysics on
fractals in Physics, Vol. 132, 1989). They have taken for granted the representation of
nature by geometrical fractal sets and by various mathematical functions that yield fractal
sets in simple ways (for example, the exceedance sets mentioned above). In contrast, the
study of nonlinear variability (in particular, that arising in turbulent cascade processes) has
shown that scaling processes generically give rise to multifractal measures with very sin-
gular small-scale limits; many results derived for fractal sets and monofractal functions
will not apply (This is much more fundamental than the problems discussed by Fox,
1989).

The reason that the initial averaging, smoothing, or sampling operation is a nontriv-
ial step is that multifractals are not defined point by point, but rather they are defined on
small neighborhoods of points (that is, they are nonlocal). Furthermore, they are also sta-
tistical; their variability can be “hard” in the sense that the spatial-temporal averaging

logoN(L)
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Figure 8.1(b) The results of functional box counting when applied to 1024 X 1024km topographic map of
France at 1-km resolution. The lines (bottom to top) are the box-counting results for altitude thresholds decreas-
ing by factors of 2 from 3600 m above sea level. The corresponding dimensions increase from 0.84 (at 3600 m)
to 1.92 (at 28 m) (From Lovejoy and Schertzer, 1990a).
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may not be enough to tame (that is, smooth out) some of the more violent fluctuations
(leading for example to the phenomenon of divergence of high-order statistical moments;
the “hard” behavior discussed in Schertzer and Lovejoy, 1992). Limiting our attention to
fractal sets and monofractal analysis techniques is partly a result of the over emphasis on
geometry at the expense of the more abstract but more powerful statistical notions of scale

Figure 8.2(a) This figure and the next illustrate the zooming technique applied in the case of the continuous
multiplicative cascade with Gaussian generator (0L = 2 and C; = 0.5). The 256 X 256 window, chosen exactly in
the center of this 512 X 512 resolution image, is zoomed by a factor of 2 in Figure 8.2b. The insertion of small-
scale detail is done in a multiplicative way by developing the cascade processes to the appropriate scale length.
These figures are reproduced from Wilson, et al., 1991.
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invariance needed to deal with multifractals. Specifically, it has led to frustrating attempts
to square simplistic monofractal analysis methods with multifractal data. In the following,
using an example of topographic data, we wish to clear up some of these issues and show
how multifractals can explain some of the apparently contradictory results reported in the
literature.

Figure 8.2(b) The resulting images where the large structures are well reproduced (for example, the sha
£ 1mag| g P p

peak in the center), but new small-scale details have appeared, characterized by the same universal scaling

parameters.
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FRACTAL SETS, MONOFRACTAL FUNCTIONS, AND MULTIFRACTALS
Fractal Sets, Dimensions, and Codimensions

The simplest illustration of scaling and scale invariance is to consider the dimension of a
set of points (S). The intuitive definition is that the contents (or “volume™) of the set n({) at
scale / is given by

n(l) e | DS (8.1)

where D(S) is the dimension (for example, the length, or the “volume,” of a line ={, the
area of a plane = 2, and so on). The volume (that is, the measure of the set) is therefore a
simple scaling (power law) function, and the dimension is important precisely because itis
scale invariant (independent of /) (See Lovejoy et al., 1986a, b for the example of geo-
physical measuring networks). Alternatively, rather than looking at larger regions of the
set [as in n(!)], we may consider N(/), the number of boxes of size [, needed to cover it.
The covering could be regarded as a spatially degraded version of the original set of scale
[. Since the number of points of S covered by each box is n(l), we clearly have
N(Dn(l) = constant; hence N(I) = D) The D(S) obtained by this box-counting procedure
can be considered as an estimate of the Hausdorff dimension of the set; it is also called the
fractal dimension, box-counting dimension, and, earlier, capacity dimension (Kolmogorov
and Tihomirov, 1959). In practice, the Hausorff dimension is often too difficult to deal
with directly, even for sets studied by mathematicians. In physical applications, the pri-
mary complications that can arise if box-counting dimensions are used as approximations
to Hausdorff dimensions are various log-corrections in N(/). However, in specially con-
cocted mathematical sets, significantly different dimensions can be obtained; see Falconer
(1990) for a discussion.

Although a given set may be fractal, we are usually more interested in its distribu-
tion, which is generally multifractal and involves codimensions rather than dimensions.
The codimension C(S) of § is the scaling exponent of the fraction of the space occupied by
the set, which is also equal to the probability P({) of finding the set in a given I sized box:

P(l) o< 1€ (8.2)

Since C(S) determines the scaling of the probability, it is a statistical exponent that is
defined intrinsically. This means that it is determined by the underlying (usually stochas-
tic) generating process and requires no reference to the dimension of the space on which it
is observed. In contrast, the fractal dimension depends on the intersection of the process
with an observing space of dimension D, where N(J) is given by the probability P(/) multi-
plied by the total number of boxes on the observing set I'P Hence, if the observing set has
a large enough dimension [D > C(S)] for intersection to occur (and hence for observation
to be possible), then D(S) = D - C(S). Since we will be generally interested in stochastic
processes defined on probability spaces with infinite dimension (D — <), the use of codi-
mensions (which will still be finite and still characterize the sparseness of the probability
space) is obligatory. The use of codimensions avoids the paradoxes of latent (that is, nega-
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tive) fractal dimensions arising when a multifractal process is studied on low-dimensional
cuts with D < C(S).

Monofractal Functions, Exceedance Sets, and Isolines

Since geographers and geophysicists are interested in fields, models for scaling phenom-
ena have usually involved scaling functions. When the latter are linear (for example, pro-
duced by summing either correlated or independent random noises), then the functions
produced can generally be characterized by a single scaling exponent, and the associated
sets will have unique fractal dimensions. In contrast, multifractals are produced by the
(nonlinear) multiplication of elementary random noises and involve multiple scaling
exponents and multiple fractal dimensions. Furthermore, they are generally not defined at
mathematical points; they are not functions but rather measures. Below, we first discuss
monofractal functions emphasizing their limitations.

Consider the function h(x), which represents the height at a point x. In this subsec-
tion, we consider the special case where £ is a random scaling function with the following
properties:

Ay, £ A7HAR, (8:3)

where the small-scale altitude difference is Ahy, = h(x; + Al Ax) - h(x;) and the large-
scale difference is Ahy = h(x, + Ax) - h(x,) where x;, X are arbitrary, A(>1) is a reduction
ratio, { = |Ax] is the separation distance, and H is the unique scaling parameter that charac-
terizes the degree of nonstationarity of the topography. The equality ¢ means equality in
probability distributions, a ¢ b if and only if Pr(a > g) = Pr(b > g) for all g, where Pr indi-
cates probability. This type of simple scaling® could also be called scaling of the incre-
ments. A special case in which the probability distributions of the altitude increments Ah
are Gaussian is called fractional Brownian motion and can be obtained, for example, by
passing Gaussian white noise through a power-law filter (that is, by fractional integration;
normal Brownian motion is obtained by the usual nonfractional integration). This notion
was introduced by Kolmogorov (1940); the expression was coined by Mandelbrot and Van
Ness (1968); these are the very special processes used to make the now familiar monofrac-
tal mountains.

Given a function h(x), sets can be defined in many different ways. First, consider the
exceedance set Sy as the set of all points x satisfying A(x) = T (that is, those regions whose
altitude equals or exceeds the threshold 7). In general, if T} > T5, then Ss¢; will be a subset
of S5 and hence D(S>7;) < D(S>7) (see Figures 8.1a and b for empirical confirmation of
this multifractal behavior). However, for the special case of simple scaling, Ss7 will not be
a fractal set al all, and D(Ssy) = D irrespective of T. Similarly, the graph of h, G, is defined
as the set of points (x, A(x)) in a (D + 1)-dimensional space, for example, when D =2, on a

This type of scaling was first introduced by Lamperti (1962) under the name “semistable.” It was called “self-
similarity” by Mandelbrot and Van Ness (1968). However, this name turned out to be a misnomer since the actual
functions f were not self-similar but self-affine, and self similarity is a much wider concept anyway.
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topographic surface. Again, in the special case of simple scaling, there is a unique codi-
mension (and dimension) associated with G, where C(G) = H, and we obtain the well-
known result D(G) = 3 - H for Voss's (1983) and Mandelbrot's (1982) celebrated monof-
ractal landscapes.

We can also define the perimeter set Py associated with S > Py is the border set of
S > defined as the level set or T-crossing set of G with the plane #(x) = 7. It is the set of
points such that arbitrarily small neighborhoods of x contain some points with 2(x) < Tand
some such that h(x) = 7. D(Py) will be the dimension of the isolines on a topographic map
of h(x). By definition Py is a subset of Ss7i hence D(Pp) < D(S>7). In general, it will
depend on the connectedness properties of S>7and increase or decrease with T only being
bounded above by the decreasing function D(Ssy). Finally, we may define S_r as the set of
points x such that A(x) = T. Clearly, it will be a subset of Py hence generally,
D(Pp)2D(S_y). However, in simple scaling we obtain the simple result
C(P7) = C(S_1) = H; hence isolines in simple scaling models of topography will have
dimensions D(Py) = D(S_y) = 2 - H independent of T.

Variograms, Spectra, and the Distribution of Islands
The relationship C(Py) = H combined with Equation 8.1 has led to a popular way of esti-

mating D(Py). By taking gth powers of the modulus of both sides of Equation 8.3 and tak-
ing ensemble (that is, statistical) averages (indicated by < >), we obtain

Logio S2,

Logyo!

Figure 8.3 First- and second-order structure functions or variograms of the Deadman's Butte data, in both
east—west {x) and north-south (y) directions, are shown along with a reference line of slope = 1 (corresponding to
a spectral exponent of B = 2). The functions 55(Ax), (Sl(Ax})z, 5;(Ay), and (S ,{Ay})2 are shown, respectively, by
white squares, black diamonds, black squares, and white diamonds.
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Sq. 105 (| Ah?l q)

_ 1 Ky(a) o
S e (8.4)

where Kj(g) is the scaling exponent of the gth-order structure function S, (also called
variogram when g = 2). In the special case of simple scaling, K,(q) is linear: Kx(q) = -Hg;
in multifractals, it will be convex (nonlinear). Unfortunately, the linearity of K;(g) is usu-
ally simply assumed and H is estimated as K},(2)/2. The relation H = C(Py) is then used to
estimate the fractal dimension of the isolines and graph. For an example on topography,
Figure 8.3 shows the results for the Deadman's Butte digital elevation map (50-m resolu-
tion, 512 x 512 points). We already can see (Figure 8.4) that K;,(2) # 2K;(1); discussion of
this multiple scaling is given in the following section. It involves convex functions Ky(g),
and exceedance sets Ssy will have fractal dimensions that decrease as the threshold is
increased.

Now consider the energy spectrum E(k) of scaling processes.4 Irrespective of
whether or not there is simple or multiple scaling, we will have E(k) = k'8, where £ is the
wave number. (This ignores possible log corrections or effects of anisotropic scale invari-
ance.) This type of spectrum is relevant for the problem of surface topography since it has
been known for some time (Venig-Meinesz, 1951) that B = 2 for the earth. Bills and
Kobrick (1985) show that this behavior holds for at least five orders of magnitude in scale
(from planetary scales down to at least =0.15 km). Figure 8.5 illustrates that it is also
roughly true for the Deadman's Butte data analyzed here where we obtained B =~ 1.93.

Since the energy spectrum is the Fourier transform of a second-order moment
(g =2), it is easy to show that B = 1 - K;(2). For example, with the Deadman's Butte data
(Figure 8.3a and b), we have K;(2) =-1.1£0.2, 3 =1.93 £ 0.03. In the case of simple scal-
ing, K;(2) = -2H; we therefore have the two special relations p=1+2H =1 + 2C(Py).
These relations have been widely popularized for the case of lines embedded in planes
(D =2), surfaces embedded in volumes (D = 3) in the form D(Pp) = (5 - B)/2, D(Pp) = (7 - BY
2 respectively. Since in virtually all these applications, the lines or surfaces are likely to be
multifractals, these relations will not hold. This means that there is not necessarily any
contradiction between estimates of fractal dimensions of lines of constant altitude and
spectral or variogram exponents.

“In Fourier space, the dilation (magnification) x — Ax is equivalent to k — Ak In spaces dimension 2 and
higher, more general anisotropic dilations (generalized scale invariance) are required. These will give rise to the
appearance of texture, which will generally give logarithmically periodic modulations of the spectra about the
simple power law given here (see Pflug et al., 1993 for more details and an application to cloud texture). This
could explain the small discrepancy in power law topography spectra reported by Gilbert (1989). Probably the
most significant source of deviation from the expected power laws followed in the latter’s spectra are due to
small sample sizes, (usually, the spectrum of a single realization is used), not the ensemble averages. For precise
estimates of the necessary size (the sampling dimension), see Lavallée et al., 1991,
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Figure 8.4 We show the log ratios of log (S(Ax)}(S L(Ax)?) and log (S(Ay/S, (A))) as functions of the log
lags, along with their best fit slopes, which are estimates of K},(2) - 2K,(1) = C) (see text). Although the method
is not accurate due to the small sample size, the slopes are 0.055 and 0.065, which are consistent with the C, esti-
mated below.

Finally, we may consider the number of simply connected areas (islands) that
exceed the threshold T. Due to the scale invariance, we may expect the following power-
law distribution:

Nr(Ap>ap) =apT, ap>>1 8.5)

where Nr indicates the number of islands defined by the threshold 7" whose area Ay
exceeds a fixed threshold ag. For the earth, when T is taken as sea level, the simply con-
nected regions are true islands; By has been estimated by Korcak (1938) as By = 0.8. Man-
delbrot (1982) popularized this Korcak law and pointed out that fractional Brownian
motion will yield By = D(P7)/2 = constant (= 1 - H/2). However, as discussed in detail in
Lovejoy and Schertzer (1991) for multifractals, not only is By a function of T, but it has no
special relation to D(P)

PROPERTIES OF MULTIFRACTAL MEASURES
Multiplicative Processes and Topography

The general monofractal nature of processes produced by the addition of random noises
and the general multifractal nature of the corresponding multiplicative processes have
already been mentioned. The multiplicative processes that interest us here were first devel-
oped as models of turbulent cascades, initially proposed as a description of atmospheric
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dynamics by Richardson (1922). There are now a whole series of such models: Novikov
and Stewart (1964), Yaglom (1966), Mandelbrot (1974), Frisch et al. (1978), Schertzer
and Lovejoy (1983, 1987), Benzi et al. (1984), and Meneveau and Sreenivasan (1987). In
these models, the energy flux € from large to small scales is conserved; hence, it is the
basic cascade quantity, Directly observable fields such as the velocity shear (Avy) for two
points separated by distance [ are related to the energy flux through dimensional argu-
ments:

Av;~elP1? (8.6)

The scaling /13 can be viewed as a power-law filter (k"/3) in Fourier space (see the
section on Nonstationary processes below). In contrast, the dynamical equations responsi-
ble for the topography are not known; the best we can do at present is to speculate on the
fundamental dynamical quantities. In analogy with turbulence, we may expect the observ-
able altitude fluctuations (Ah;) to be related to a fundamental conserved quantity ¢, and the
horizontal separation of the points as

Ay = ot 3.7)

Equation 8.7 indicates that the nonstationary topography process for altitude fluctu-
ations A% could be related to the underlying stationary . In the following, we show how a
highly inhomogeneous multifractal topography will generically result if orographic pro-
cesses are multiplicative and we outline some of their basic properties. Indeed, elsewhere
(Lovejoy, et al., 1993) we show how equation 8.7 can be viewed as a multifractal general-

In E(k)

Figure 8.5 The spectral energy density as a function of the radial wave number for a grid mesh of 512 X 512,
at 50-km resolution, of the Deadman's Butte data. The straight line is the best fit slope yielding exponent estimate
B=1.93+0.03.
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ization of deterministic models of topography near ocean floor ridges, including a dimen-
sional argument giving H = 1/2. Figure 8.6 illustrates an example of such a discrete
multiplicative process for @ in two dimensions: a large structure of characteristic length /g
with an initial uniform density @ is broken up (via nonlinear interactions with other struc-
tures or through internal instability) into smaller substructures of characteristic length
I, = Ig/A (A = 2 is the scale ratio between two construction steps in this particular exam-
ple), transferring in the process to each substructure a fraction of its density [L¢g. Figures
8.7 a—c show the analogous continuous cascade process for #, with the parameters corre-
sponding to the topography as estimated below.

When the process is repeated, larger and larger values of ¢ appear, concentrated on
smaller and smaller volumes; the result will be highly intermittent. Indeed, analysis shows
that we obtain the following basic multifractal relations:

(pl=7{", A1

P ZA.Y = _C(Y}
el 8.8)

where @y is the value of the multifractal at resolution A, which is the ratio of the largest
scale of interest to the smallest scale of the process. This indicates that the probability dis-
tribution of singularities of order higher than a value s related to the fraction of the space
occupied by them, as determined by their codimension function c(y). Note that Equation
8.8 is nonlocal, that is, it is a relationship between the histograms of incipient singularities
13.(2) = log ¢y (x)/log A at different resolutions about the point x (it does nor assume that a
well defined limit exists at each point x when A — o), the singularities must be viewed as
statistical exponents rather than point values.

Similarly, the gth order statistical moments of the field intensities will generally
have a scaling exponent K(g); using the definition for the statistical moments, we obtain
the following relation:

<gf> A @ (8.9)

(In the limit A — o<, the scaling exponents are related by the following Legendre
transformations: K(g) = maxy (gy - ¢(Y)); ¢(Y) = max , (¢Y- K(g)). The turbulent notations
c(y) and K(q) are related to the more familiar strange attractor notation (Halsey et al.,
1986) by the following: oy = (D - V), Tp(@p) = D - c(y), and Tp(g) = (g - 1)D - K(g). We
have added the subscript D to emphasize that the strange attractor notation fundamentally
depends on the dimension of the observing space Dj it cannot be used in stochastic pro-
cesses where D — oo,

The multiplicative processes discussed above are quite general; however, various
other (restrictive) types of multifractals exist. Table 8.1 gives a comparison of some of
their properties. Up to now, most attention has been paid to the geometric multifractals
(Parisi and Frisch, 1985; these very calm multifractals are defined purely geometrically
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Figure 8.6 The left side shows the step by step construction of a “bare” multifractal process (the & model),
starting with an initially uniform unit @ field. The vertical axis represents the density @3 flux to smaller scale
with its ensemble average conserved (<@ > = 1). At each step the horizontal scale is divided by 2. The develop-
ing spikes are incipient singularities of various orders (characteristic of multifractal processes). The right side
shows the effect of smoothing over larger and larger scales, yielding the “dressed” quantities.
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without any probability space) and to the “microcanonical” multifractals, which are also
too calm for our present purposes.

Table 8.1 Classification of Multifractals According to Their Extreme Singularities

Type of Multifractal Geometric Microcanonical  Canonical

Types of singularities present ~ Calm Calm Calm, wild usually hard

Localized Yes No No

Conservation per realization Yes Yes No

Convergence of moments All orders All orders Divergence of high
orders

Figure 8.7 Three stages in the construction of a continuous multiplicative process for the topography field 4,
showing the effect of finer and finer resolution. The resolution increases from (a) 1/16th of the image size, to (b)
1/64th, to (c) 1/256th. This field is obtained by fractional integration of a continuous ¢ field, with parameters H =
1/2,Cy=0.1,and o. = 1.8.
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Universal Multifractals

It has been shown that, for canonical processes, universality classes exist (for example,
Schertzer and Lovejoy, 1987, 1988, 1989a; Schertzer et al., 1991; Wilson et al., 1991),
which means that we may expect K(g) to be given by the following functional form:

C]
L ST 1
K@) = B A (8.10)

Ciq log(9), a=1, for (<2, g20)

where C; and o (0 < & < 2) are the fundamental parameters needed to characterize the pro-
cesses. The Lévy index o indicates the class to which the probability distribution belongs;
it tells us how far we are from monofractality: & = 0 corresponds to the monofractal B
model; ot = 2 is the maximum. The above functions are for conserved (stationary) quanti-
ties and are the multiplicative analogs of the standard central limit theorem for the addi-

Figure 8.7(b)
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tion of random variables. Closer analysis shows that there are actually five qualitatively
different cases for the Lévy index c.

The case ¢« = 2 corresponds to log normal multifractals, 1 < o < 2 belongs to (log)
Lévy processes with unbounded singularities, & = 1 corresponds to log Cauchy multifrac-
tals, when 0 < o < 1 we have (log) Lévy processes with bounded singularities, and finally
o =0 corresponds to the most popular and well-known monofractal § model (Novikov
and Stewart, 1964; Mandelbrot, 1974; Frisch et al., 1978). A more detailed discussion of
these fives cases and in particular of the generators of the Lévy variables can be found in
Schertzer et al. (1988), Fan (1989), or Schertzer and Lovejoy (1989b).

The parameter C; is the fractal codimension of the singularities contributing to the
average values of the field; it tells us about the sparsity of the average level of intensity.
Furthermore, if C| > D (the dimension of space in which the process is observed), then the
multifractal is degenerate on the space; that is, it almost surely vanishes everywhere.
When o is not much smaller than 2 (as in the topography data below), these are approxi-
mately lognormal, since with the exception of their extreme tails, these Lévy distributions

Figure 8.7(c)
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are themselves nearly normal (this tail is pushed to lower and lower probability levels as
0, — 2). The widespread lognormal phenomeology is geophysics and geography is there-
fore an indication that the corresponding fields are actually multifractals, and are not
exactly lognormal.

Nonstationary Processes

We have seen that in multiplicative processes there is always an underlying conserved
quantity that has basic physical significance. In turbulence, it was the energy flux to
smaller scales; in topography, it does not yet seem to be known, but we denoted it @ and
related it to the altitude fluctuations via Equation 8.7. In terms of the scaling, conservation
means <@;> = constant (independent of A), hence K(1) = 0. If we consider the energy
spectrum of @3, it is k'ﬁ with B = 1 - K(2); that is, the spectrum is always less steep than a
1/f noise.

If we consider the directly measurable altitude fluctuations Ak rather than @, we find
that Ahy, = @, %A, where a is unknown (changing a is essentially the same as changing
Cy; see below), and we anticipate that from the measurements below, H =1/2 (if ¢, was
constant, then the altitude difference between two points would grow as the 1/2 power of
their separation distance A 172y, In Fourier space, the relation between ¢ and Ak is sim-
ple: they will differ by kM the spectra (the modulus squared of the Fourier transforms)
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Figure 8.8. Log [K(g, n)| versus log 1, with o =2 (log normal), C; =0.15, and D = 2, are given for g = 0.5.
The curve of the stationary processes (big hollow square) is compared to those of the same processes after frac-
tional differentiation (white symbols, H = -2, -1, and -0.5, from top to bottom). The fractional differentiation and
integration do not affect the estimate of e (all the slopes are parallel), but fractional integration leads to biased
estimates of C; (the curves with black symbols are all shifted downward compared to the theoretical stationary
processes shown by the line).




PROPERTIES OF MULTIFRACTAL MEASURES 177

will differ by k2H Since (normal) differentiation of a function corresponds (ignoring con-
stant factors) to multiplication by k in Fourier space and integration corresponds to divi-
sion by k, we obtain the altitude fluctuations by the fractional integration (order H) of ;.
Conversely, if Ahy_is measured, we may obtain ¢, by fractional differentiation of the same
order (see Schertzer and Lovejoy, 1991b, Appendix B.2, for more discussion of fractional
derivatives and integrals).

The reason for dwelling on this is that it illustrates a basic point common to most
geophysical fields, that their spectra have 3 > 1 and hence they cannot be stationary pro-
cesses; they must be fractionally differentiated (that is, the spectra must be power law fil-
tered) to become stationary. For topography, this means removing the A term and taking
the a”! power of the result in order to obtain the stationary ¢ from the nonstationary Ahy.
The importance of this for standard data analysis has long been realized; for example, we
have already seen that when 8 > 1 we should use variograms rather than autocorrelation
functions [for example, analyze the differences (finite derivatives) of a time series rather
than the series itself]. The same considerations apply to the use of the Double Trace
Moment technique (below). Figure 8.8 shows the result when a simulated stationary pro-
cess is fractionally integrated and differentiated by varying amounts: as long as we differ-
entiate (filtered by k¥ with H > 0), we obtain stable and accurate estimates of both C 1 and
a; however, when we fractionally integrate (H < 0), we only recover o and C 1 is not accu-
rately determined. Figure 8.8 also clearly indicates that, as long as the spectrum is less
steep than the underlying stationary process [B < 1 - K(2)], we can recover Cy. After C;, &
are estimated, we can determine K(2,1) from Equation 8.13 in the next section, and hence
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Figure 8.9 The spectrum of Deadman's Butte compared with the spectrum of the modulus of the gradient
(which approximates a fractional differentiation of order 1), followed by a fractional integration of order 1. As
expected, the curves are parallel for low frequencies, but at the high wave number end, they differ significantly
over roughly the last factor 4,
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the B of the stationary process, and infer the amount of fractional integration required to
go from the underlying stationary process to the observed nonconserved process. Writing
B for the spectral slope of the observed process, the order of fractional integration (the H
in Equation 8.7) required to go from the stationary process to the nonstationary process is
therefore given by

CB-14+K@ _B-1 G272
e e T, 1

This formula will be useful in the simulations described below where we produce multi-
fractals with the same o, B, and C.

As a final comment before turning to the actual data analysis, we describe a shortcut
that in many cases enables us to avoid the use of Fourier space. Recall that replacing the
time series by its differences is essentially the same as multiplying by k in Fourier space.
To generalize this to two (or more) dimensions, one possibility would be to use a finite dif-
ference Laplacian. This would multiply by &Iz in Fourier space and hence the spectrum by
k|*; it would be quite drastic. We find that a compromise involving less smoothing that
works quite well is to replace the field by the modulus of the local finite difference gradi-
ent operator. Figure 8.9 shows this explicitly on the height field data, which is discussed
below. It compares the spectrum of the modulus of the gradient multiplied by k! in Fou-
rier space with the spectrum of the original height field; the two curves are parallel as
expected, except for high-wave-number deviations occurring roughly in the last factor of 4
of wave numbers. This deviation is not surprising: if a “cleaner” filtering is desired, Fou-
rier methods should be used.

COMPARISON OF MONO AND MULTIFRACTAL EXPONENT RELATIONS

Now that we have introduced the essential difference between the nonstationary alti-
tude A, and the stationary underlying flux @, we summarize and compare their various
properties in table 8.2.The monofractal limit (ot = 0) is obtained when the convex curve
of K(g) becomes a straight line (a linear function of g). Simple scaling is the limit when C;
— 0 (H=#0).

The multifractal nature of the topography and the consequent failure of the equation
B = 2C(Pyp) + 1 can reconcile some of the apparently contradictory results summarized in
Turcotte (1989). For example, using the value B = 2 for topography and the relation
B =1+ 2C(Py), we obtain C(Py) = 0.5 and hence, D(P7) = 1.5 for one dimensional cross-
sections of the topography. This is in contradiction with various analyses of the lines of
constant altitude (values of D(P7) = 1.2-1.3 have often been reported.) However, as figure
1.1b shows, the value of D(S 2 1) (which is an upper bound for D(P7)) is simply a function
of altitude apparently tending to zero for large T; the discrepancy is simply a reflection of
the multifractal nature of the topography.
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Table 8.2 Summary of Various Scaling Exponents and the Simple Scaling Special Case

General Multifractal/Multiscaling Result Simple Scaling
Conserved flux <> = I'K@D, K(q) convex, # 0 [except <@%> independent of {,
scaling K, K(1)=0] Kig)=0
Altitude Structure S, ;=< [Ah;| 9> ; Ki(q) = K(g) - gH Ky(g)=-gH
function
Spectral exponent B =1 - K;(2) B=1+42H=1+2C(Pp
Codimension of C(S > p) = increasing function of altitude C(S>7) =0
exceedance threshold T
sets Sz ¢
Codimension of C(PT) 2 C(Sy2) C(Py) = H = constant
isolines Pr
Exponent forthe  By> 0, function of T Br=D(Pp)f2=1-H2=
distribution of constant, independent of T
the area of
islands

DOUBLE TRACE MOMENT ANALYSIS TECHNIQUE

When applied to turbulent and/or geophysical data (rather than to strange attractors), exist-
ing multifractal analysis techniques have had limited accuracy for a number of reasons.
Techniques based on statistical moments (for example, partition function methods) suffer
from both undersampling and divergence of moments, whereas others based on histo-
grams or wavelets (with the exception of the probability distribution multiple scaling tech-
nique, Lavallée et al., 1991) assume that multifractals are local. Finally, these techniques
have attempted to estimate an infinite number of parameters: the codimension function.
We now describe a simple technique that overcomes these problems by exploiting the uni-
versality to estimate C; and o. directly; K(g) is then obtained using Equation 8.10 and c(7)
by Legendre transformation of the same equation.

Consider the stationary multifractal process (<> = 1), where the resolution A’
is the ratio of the outer (or largest) scale of interest to the smallest scale of homo geneity.
The basic idea is to generalize the application of statistical methods to the quantity o,
which is no longer conserved [ <@;"> = (A)X™)]. This is done by taking the N power of
@y, at the largest scale ratio A and then studying the scaling behavior of the various gth
moments at decreasing values of the scale ratio A' < L. The g and 11, double trace moments
at resolution A' and A, have the following multiple scaling behavior (Lavallée, 1991:
Lavallée et al., 1992):
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m)
IL, @y = feia (8.12a)
By
q () 4 —
Try, (01 = <Z_[H;v TR e (8.12b)

where By is a dimensional “ball” (square in figure 8.10), I1,M(B,) is the “n flux” over the
ball, and A, is the set A at resolution A which results from covering the set with the balls
(indexed with i). The sum is over all the balls in the covering. The integration over A, res-
cales the fields and “dresses” the quantities. When 1 = 1, the right side of Equation 8.12
reduces to the usual trace moments (which are themselves the ensemble average of the
usual partition function).

The scaling exponent K(g, 1) is related to the usual K(g) = K(g, 1) as follows (see
Lavallée, 1991; Lavallée et al., 1992):

K(g.n) = K(qn.1) —gK(n, 1) (8.13)

K(g, n) reduces to the usual K(g, 1) when n = 1 and the right side of Equation 8.12b to the
usual trace moments (Schertzer and Lovejoy, 1987, 1989a). The exponent K(g,1) is the
usual scaling exponent defined in Equation 8.10. Up to now it was written K(g) for brevity
and because no confusion was possible; for the rest of the paper, K(g,1) will be used.
Using Equation 8.10, the expression for K(g, 1) becomes

S niieg, arl

K(Q»Tl)=naff(f}»1)={ﬂ-1 i
Cing log (q) a=1

(8.14)

with0 < <2,and g =20 (for oc # 2).

Keeping g fixed (but different from the special values 0 or 1) and studying the scal-
ing properties of the DTM for various values of 1 allows the determination of the scaling
exponent K(g,n) as functions of  and the slope of |K(g, 1)| as a function of 11 on a log-log
graph, yielding a value of the parameter o. On the same log-log plot, the values of C; can
be estimated by solving the expression for the intercept. For theoretical development and
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Figure 8.10 A schematic diagram illustrating the different averaging scales used in the double trace moments
technique.
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extensive numerical testing of the double trace moments technique, see Lavallée, 1991;
Lavallée et al., 1992.

Equation 8.13 breaks down when max (g1, 1) > min{gp, gmax) Where gp and g .
characterize, respectively, the divergence of moments and the undersampling (Lavallée et
al., 1991a). In these cases, K(g,1) becomes linear for g greater than these critical values,
and Equation 8.13 indicates that scaling exponents K(g, n) becomes independent of 1.

EMPIRICAL RESULTS
The Universal Multifractal Parameters of Deadman's Butte

The DTM technique is now applied to the digital elevation model (DEM) of the Dead-
man's Butte region of Wyoming in the United States (see figure 8.17). The data were pro-
vided by P.J. Muller and D. Rees of University College, London. The height data, in
meters, are distributed over a grid of 512 x 512 at 50-m resolution. As shown above, the
spectral slope is B = 1.93 (Figure 8.5). Since B > 1, it is necessary to fractionally differen-
tiate either in Fourier space or by studying the modulus of the gradient of the topography.
Denoting the latter by |Vh|, we have

- _fan? on? 8.15
VRG] = |GG +(5) (8.15)

which can be approximated by the following finite difference:
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Figure 8.11 The scaling behavior of the double trace moments of the Deadman's Butte data is illustrated here
by the straightness of the curves of the log [T (IV41,™)7] as functions of the log(A). The curves with positive
slopes are those for ¢ = 0.5, and from top to bettom 1 = 2, 0.5. The curves with negatives slopes are those for
¢ = 2, and from top to bottom 1 = 2, 0.5. The slopes are K(g, 1) (g - )D.
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Figure 8.12 Log |K(g, n)| versus log m for the Deadman's Butte data. [g is 2 (top) and 0.5 (bottom)]. All the
curves are parallel as predicted by Equation 8.14. Their slopes, with 0.5 <n <24 are a.= 1.90, 1.89, and the cor-
responding C; are = 0.044, 0.045, respectively. The consistency between the estimates of o and C, for various
values of g is a good indication that they are accurate. For values of 1 too high or too low, the curve K(gq, n)
becomes fairly constant, as expected, and these values of log |K{(g, 1)| must not be considered to estimate .

VR (i, )| = «/[7h(f+ L)) —hGi=1,)12+ [h(ij+ 1) —h(j-11? (8.16)

where Ax = Ay = 1. The indexes i and j are, respectively, the horizontal and vertical coordi-
nates, in our case going both from 1 to 512. The difference operations are applied without
privileging any particular direction; problems related to anisotropy are neglected. The
field IVAl is raised to the power ) at its smallest scale length, and the gth statistical trace
moment of the field is estimated from A = A = 2° = 512 to A = 2. The rescaled field intensi-
ties are obtained by averaging over the |VA|" at the finest resolution.

The scaling behavior of the log [Trx3(IVA\")?] against log(A) is given in Figure 8.11
for several values of ¢ and 1. The slopes of these curves give the estimated scaling expo-
nents K(g, M). Log [|K(g, 0l as a function of log n is shown in Figure 8.12. From this
curve, the estimated parameters are C; = 0.045 + 0.005 and o = 1.9 *+ 0.1. Finally, using
our estimate p = 1.93, we can use Equation 8.11 to estimate the parameter H = (1.93 - 1)/
2 + 0.045(21%-2)/(2x 0.9) = 0.51 = 1/2.

Universal Multifractal Parameters for French Topography

For comparison with the 50-m resolution Deadman’s Butte data, we also applied the DTM
technique to a DEM of French topography of 512 x 512 pixel at 1-km resolution. Figure
8.13 shows various DTM as functions of the resolution, indicating the accuracy with
which the scaling is respected when A varies from 29 10 2, and Figure 8.14 shows the
curves log K(g, n) against log 1, indicating that over the range 0.01 <1 < 3 universality
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holds very well. As expected at both large and small n, the small sample size (a single
realization) leads to serious sampling problems for these extreme moments. For g = 0.5, 2,
4, we have very parallel lines with slopes very near o = 1.7; analysis of the intercepts with
log n = 0 indicates that C; = 0.075 % 0.005. These values should be compared with the
values for Deadman's Butte (o0 = 1.9, C| = 0.045 £ 0.005), recalling that these are statisti-
cal exponents and that single realizations of multifractal processes will be extremely vari-
able. To compare the two K(g, 1) functions, we plot (Figure 8.15) for g = 2 and show the
intermediate slope o = 1.8 for reference. Although we can be quite confident that the val-
ues of C; of the corresponding multifractal processes really are different, the values of the
more fundamental multifractal index ¢ may in both cases be compatible with the common
value o = 1.8, although many more data sets will need to be analyzed to be sure.

Discussion

The obtained values of H, C, and o indicate that the height field has seemingly paradoxi-
cal properties that go a long way toward explaining both the successes and the limitations
of monofractal analyses and models. First, the multifractal index o is nearly its maximum,
indicating that singularities of all orders contribute significantly to the process: we are
almost as far as possible from the monofractal case o = 0. However, the modest values of
C, indicate that the mean of @ is not too sparse (a space-filling mean would have C; = 0).
Due to the fractional integration (H = 1/2) necessary to obtain the height field from ¢,
even if C} = 0, we would still obtain a fractal height field; however, its properties would be
independent of the altitude and yield fractal dimensions 2 - H = 1.5 for lines of constant
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Figure 8.13 Same as Figure 8.11 but for the French topography; when g = 0.5 (curves with a positive slope),
1 = 2.26, 0.56 from top to bottom; when g = 2 (curves with a negative slope), n = 1.6, 0.56 from top to bottom,



184 Chap.8 NONLINEAR VARIABILITY OF LANDSCAPE TOPOGRAPHY

altitude. Hence, our value of Cj is in perfect accord with the standard empirical results for
those statistics which do not depend sensitively on the extremes. However, once we start
examining isolines at high altitude or high-order moments, the large value of o will ensure
that the multifractal nature of the process will be important.

Actually, the low values estimated for C; in both cases may not be very significant
because (as mentioned in the section on the DTM technique) the DTM technique cannot
distinguish between the conserved process ¢ and an arbitrary power a of the process. In
other words, the fundamental conserved process responsible for topography could have
significantly larger C;a®. Indeed, this is exactly the case for the velocity and temperature
fields analyzed in Schmitt et al. (1992a and b), where the value a = 3 is determined by
dimensional arguments and low values (=0.1) for the C) of the velocity field are associated
with significantly larger values (=0.25) for the underlying energy flux €.

Numerical Simulations of Isotropic, Self-similar Universal Topography

As explained earlier, universal multifractals arise when scaling multiplicative processes
are mixed: either by nonlinear interactions between different processes or by nonlinear
interactions between structures at intermediate scales (that is, a densification of the cas-
cade leading to a continuous cascade). Because of the existence of stable, attractive uni-
versal multifractal generators, the results of such processes are independent of most of the
details; hence, we may expect to observe universal multifractals in many diverse areas

Log;0/K(q, n)!

Logion

Figure 8.14 Same as Figure 8.12 for the French topography. From top to bottom, g takes the following val-
ues: 4, 2, and 0.5. The estimates of the slope for g = 4, with 1 taking values between 0.1 and 0.5, give o = 1.67.
The same analysis for ¢ = 2 and 0.5 (with 1 taking values between 0.12 and 1.1 in the first case and between 0.3
and 2.3 in the second) yields respectively, 0. = 1.69, 1.7. The values of C,, obtained by solving the expression for
the log M = O intercept given by the log |K(g, 1)| and using Equation 8.10, are, respectively; 0.0078, 0.076, and
0.076. Here also the values of ¢, C; determined are independent of the g values.
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where the dynamics are strongly nonlinear and occur over wide ranges of scale. In turbu-
lence, the physical basis of these universal multifractals is the scaling symmetry, conser-
vation of energy flux, and cascading phenomena, which implies that the dynamics at one
scale mainly modulate the nearby scales. In topography and most other geophysical and
geographical fields, the exact dynamical equations and the corresponding conserved areas
of statistics are usually not known. However, just as Gaussian distributions occur in many
areas of statistics, so we may expect universal multifractals to arise in many scaling non-
linear dynamical systems. Indeed, the prevalence of nearly log normal phenomena in
geography and geophysics suggests the ubiquity of multifractals.

Wilson et al. (1991) describe the numerical simulation of clouds and topography,
including how to iteratively zoom in and calculate details to arbitrary resolution in
selected regions. Although we will not repeat these details here, enough information has
been given in the previous sections to understand how they work. First, recall that a con-
served (stationary) multifractal process ¢ has a generator I'y = log @;, which is exactly a
1/f noise; that is, its spectrum is E(k) = k! (this is sufficient to ensure the multiple scaling
of the moments of ¢, ). Therefore, to produce a generator, we start with a stationary Gaus-
sian or Lévy subgenerator. The subgenerator is a noise consisting of independent random
variables with either Gaussian (ot = 2) or extreme Lévy distributions (characterized by the
Lévy index o), whose amplitude (for example, variance in the Gaussian case) is deter-
mined by C. The subgenerator is then fractionally integrated to give a k! spectrum. This
generator is then exponentiated to give the conserved @,, which will thus depend on both
C; and o. Finally, to obtain a nonconserved process with spectral slope B, the result is
fractionally integrated by multiplying the Fourier transform by &k where H is given in
Equation 8.11. The entire process involves two fractional integrations and hence four
FFTs. Fields of 512 x 512 can easily be modeled on personal computers (they take about 3
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Figure 8.15 Log |K(g, n)| for the French topography (top) and Deadman's Butte (bottom) are compared with
g = 2. The lines have slopes equal to 1.8.
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minutes on a Mac II), and 256 x 256 x 256 fields, for example, for the temporal evolution
of clouds, have been produced on a Cray 2. Such cloud simulations have been turned into
a video called multifractal dynamics (Brenier, 1990; Brenier et al., 1990).

Figures 8.7a—c show the results for parameters similar to those found for Deadman's
Butte and France. Another example with o = 1.6 (Figure 8.16) is shown to indicate the
range of behavior achieved by varying the multifractal index o The commonly used ray-
tracing technique has been used to visualize the simulations since this effectively high-
lights the surface texture. Perhaps one of the most striking differences between the figures
is the existence of smooth low “plains” when @ < 2 (most visible for o = 1.6), which is a
direct consequence of the extremal Lévy character of the random variables used in the cor-
responding generator. In effect, when o < 2, there must be a more and more marked asym-
metry between positive and negative fluctuations in the generator: the negative
fluctuations becoming more and more extreme with respect to the positive ones as o
decreases. When the generator is exponentiated to give the conserved process, the result is
strong holes, some of which can be large, in which the conserved process will nearly van-
ish. Finally, the power-law filter (k'H) applied to generate the topography field is a smooth-

Figure 8.16 Simulation of topography with multiplicative cascade processes visualized using ray tracing
techniques, with o= 1.6, C; = 0.1, and H = 1/2.
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ing operation that tends to round out the holes somewhat; nevertheless, their effect is
clearly visible in the simulations.

Figure 8.17 shows the Deadman's Butte data with the same format. The most obvi-
ous visual difference between this and the preceding simulations is that the Butte data
have far more interesting texture due to their anisotropy, which is present at all length
scales. Clearly, more realistic topography models will have to go beyond the restrictive
isotropic (self-similar) framework described here. Followin g the formalism of generalized
scale invariance (mentioned earlier), this will require introducing a new generator for the
scale-changing operations.

Figure 8.17 The topography of Deadman's Butte shown with ray tracing techniques.
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CONCLUSION

The problem of adequately conceptualizing and modeling the extremely variable geophys-
ical and geographical fields in our environment has a long history. Of the various ideas
that have been put forward to deal with the problem, the notion of scale invariance is
undoubtedly the most seductive because it is the simplest hypothesis that seems to be
capable of accounting for the ubiquity of complex geographical fields spanning many
orders of magnitude in scale.

Early ideas of scaling involved restrictive scale-changing operations: structures
were assumed statistically isotropic (self-similar). This means that they were unable to
deal with differential rotation, compression, or texture. Furthermore, restrictive types of
scaling appropriate for fractal sets, but not for multifractal fields, were used. In the first
part of this paper, we reviewed these issues, demonstrating explicitly how many com-
monly used methods for estimating fractal dimensions (such as spectral or variogram—
structure function exponents) can only be used for dimension estimates in monofractal
systems.

We continued our review with an outline of multiplicative processes, indicating
briefly how they lead to universal multifractals when they are mixed. Stable and attractive
generators of multiplicative processes exist, and they are likely to arise from diverse non-
linear mechanisms; the details are unimportant in the limit where interactions between
many different processes occur or where interactions occur over a continuum of length
scales.

We then outlined the new double trace moments analysis technique, which is the
first to be specifically designed to estimate the universal multifractal indexes and tested it
on multifractal simulations. We applied this technique to digital elevation models of Dead-
man's Butte (50-m resolution) and French topography (1-km resolution), obtaining the
estimates o.= 1.9+ 0.1 and o = 1.7 + 0.1, respectively, for the multifractal indexes, and C;
= 0.045 + 0.005 and C; = 0.075 + 0.005 for the codimension of the mean of the corre-
sponding conserved process. The multiple scaling of the data sets was accurately con-
firmed over the entire range of scale (factor 512 in both cases), and the universality of the
scaling exponents over the range 0.1 to 3 is identified. For exponents larger than this, we
have an undersampling problem: many realizations must be used to get more accurate esti-
mates for these extreme exponents, for exponents smaller than this the results are domi-
nated by noise or measurement errors.

Finally, we briefly described how to simulate such fields and produce simulations
with the same o, C;, and spectral exponents B (=2 here). We argue that the fundamental
difference between the simulations and the data is that the former are constructed to be
isotropic (self-similar), whereas the latter are highly anisotropic. More realistic models
can easily introduce scaling anisotropy (including stochastic anisotropy to deal with
locally varying differential compression and rotation of structures) by using anisotropic
scale-changing operators in the framework of generalized scale invariance (GSI) (see
Lovejoy et al., 1992; Pflug et al., 1993). This is the current subject of empirical, numerical,
and theoretical investigation.
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