Scale, scaling and multifractals in geophysics

Part1

Introduction

Jourse at U. Paris Sud, May 6, 7 2014

6 May, 2

European Geosciences Union short course, April 28, 2014:

Scale, scaling and multifractals in complex geosystems parts 1, 2 (2x45 minutes, slides available)

Graduate course at McGill: Multifractals and turbulence

http:// www.physics.mcgill.ca/ ~gang/PHYS616/ Multicourses.home.htm

12x2 hours, slides available:

Lecture 1, Jan. 15, 2014, Introduction: Our multifractal world part 1 Lecture 2, Jan. 22, 2014, Introduction: Our multifractal world part 2

Lecture 3, Jan. 29, 2014, Turbulence and spectra

Lecture 4, Feb. 5, 2014, Spectra, turbulence, fractal sets

Course
synopsisLecture 5, Feb. 12, 2014, Fractal sets, multifractal cascadesMay 6,7Lecture 6, Feb. 14, 2014, Multifractals: moments
Lecture 7, Feb. 19, 2014, Data analysisLecture 8, March 12, 2014, Multifractals: codimensionsLecture 9, March 19, 2014, Multifractals: extremes
Lecture 10: March 26, 2014: Multifractal simulationsLecture 11: April 4, 2014: Generalized Scale Invariance: linear
space-timeLecture 12: April 9, 2014: Generalized Scale Invariance: nonlinear,
space-timeUISE at U. Paris Sud, May 6, 7 2014

Which chaos for geophysics?

Deterministic Chaos?

Low Dimensional Nonlinear Dynamics I

Nonlinear Mappings

Discrete time (=n) evolution of a few variables (\underline{x}):

Z, C are complex numbers

$$Z_{n+1} = Z_n^2 + C$$

The Mandelbrot set

Low Dimensional Nonlinear Dynamics II

Flows

Continuous time (=t) evolution of a few degrees of freedom (\underline{X}):

$$\frac{d\underline{X}}{dt} = \underline{F}(\underline{X})$$

Lorenz equations:

$$\frac{dx}{dt} = \sigma(y - x)$$
$$\frac{dy}{dt} = rx - y - xz$$
$$\frac{dz}{dt} = xy - bz$$

Few degrees of freedom... few applications

where r, b, σ are positive constants.

High Dimensional Nonlinear Dynamics

Nonlinear PDE 's

Fields/spatial structures evolving in time Example: Navier-Stokes Equations:

$$\frac{\partial \underline{\mathbf{v}}}{\partial t} + (\underline{\mathbf{v}} \cdot \nabla) \underline{\mathbf{v}} = -\frac{\nabla p}{\rho} + \nu \nabla^2 \underline{\mathbf{v}} + \underline{\mathbf{f}}$$
$$\nabla \cdot \underline{\mathbf{v}} = \mathbf{0}$$

where \underline{v} = velocity, t = time, p = pressure, ρ = density, v = viscosity, \underline{f} = b ody forces (e.g. stirring, gravity).

The emergence of atmospheric dynamics (Classical)

Vortices in strongly turbulent fluid

(M. Wiczek, numerical simulation, 2010)

. Ma

Emergent laws and Complexity

The relative simplicity of the high level laws is due to a *reduction of the complexity* of the system

If all existing emergent laws are used to describe a system, the remaining complexity is *irreducible*

Scale Invariance of the dynamics

Multiscaling of the Navier-Stokes equations

Zoom factor λ $\vec{X} \rightarrow \frac{X}{2}$

Rescaling

of the

velocity

 $\vec{v} \rightarrow \frac{\vec{v}}{\lambda^{H}}$

 $\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \nabla)\vec{v} = -\frac{\nabla p}{\rho} + \nu \nabla^2 \vec{v} + \vec{f}$ $\nabla \cdot \vec{v} = 0$

(constraint used to eliminate p) where \vec{v} = velocity, t = time, p = pressure, ρ = density, v = viscosity, \vec{f} = body forces (stirring, gravity)

Rescaling of time, viscosity, forcing follow from dimensional considerations

H is an

arbitrary

scaling exponent

 $t \rightarrow \frac{t}{\lambda^{1-H}}$ $v \rightarrow \frac{v}{\lambda^{1+H}}$ $\vec{f} \rightarrow \frac{\vec{f}}{\lambda^{2H-1}}$ Kolmogorov's Law: Considering $\varepsilon = -\frac{\partial v^2}{\partial t}$ energy flux to smaller scales to be invariant, we obtain H = 1/3, hence for mean shear $\Delta \vec{v} \approx \varepsilon^{1/3} \Delta x^{1/3};$ E(k) = k^{-5/3} This already leads to singularities: $\frac{\partial \vec{v}}{\partial x} = \lim_{\Delta x \to 0} \frac{\Delta v}{\Delta x} \approx \Delta x^{-2/3} \rightarrow \infty$

Emergence of Atmospheric laws

Fluctuations \approx (turbulent flux) x (scale)^H

Differences, tendencies, wavelet coefficients

Cascading Turbulent flux Anisotropic Space-time Scale function Fluctuation /conservation exponent

Fourier domain:

$$\begin{pmatrix} Variance_{observables} \\ wavenumber \end{pmatrix} = \begin{pmatrix} Variance_{flux} \\ wavenumber \end{pmatrix} (wavenumber)^{-2H} \\ = (wavenumber)^{-\beta} \\ \text{Course at U. Paris Sud, May 6, 7 2014} \\ \text{Space: E(k) \approx k^{-\beta} \\ \text{Time: } E(\omega) \approx \omega^{-\beta} \\ \text{Time: } E(\omega) \approx \omega^{-\beta} \\ \text{Space: E(k) \approx k^{-\beta} \\ \text{Time: } E(\omega) \approx \omega^{-\beta} \\ \text{Space: E(k) \approx k^{-\beta} \\ \text{Spa$$

Energy Spectra

Scaling geometric sets of points = fractals Scaling fields=multifractals

$$E(k) \propto k^{-\beta}$$

k= $2\pi/L$ = wavenumber, β =spectral exponent

Scale invariance

$$E(\lambda^{-1}k) = \lambda^{\beta}E(k)$$

β Invariant under zoom by factor λ in real space.

Examples in the spatial domain

The Atmosphere: horizontal

u

Clouds photographed from the roof of the McGill physics department

 $Log_{10}k~(1/m)$ Course at U. Paris Sud, May 6, 7 2014

The earth's surface, solid earth

Topography

ETOPO5

altitude data (5 ' arc, roughly 10km Resolution)

Ocean Colour: Mies sensor, experimental region

210km long swath, 28500X1024 pixels, 7m resolution, (8 visible channels)

The scaling of the KTB borehole (scaling in the vertical)

(1987-1995) 9.1km deep Russian Kola: 12.2 km

Marsan and Bean (2003)

Scaling in time:

From the age of the earth to the viscous dissipation scale: 4.5x10⁹ years - 1 ms:

20 orders of magnitude in time

A voyage through scale...

Course at U. Paris Sud, May 6, 7 2014

The NOAA NCDC Paleoclimate data site graph (inspired by Mitchell)

How to understand the variability?

Answer #1: Scale bound thinking

Scale bound thinking

Antonie van Leeuwenhoek

Mandelbrot 1924-2010

(1632 - 1723)

.....the discovery of micro-organisms

"Animalcules," described in depth by Leeuwenhoek, c1695-1698. By Anton van Leeuwenhoek

Pure, (self-similar) Fractal thinking

The same!!! (the Mandelbrot set) Course at U. Paris Sud, May 6, 7 2

Clouds..... Zooming in by factors of 1.7

But not here!

Need Scale invariant thinking!

factor 1000)

Vertical cross-section of the atmosphere

Scale invariance and the Phenomenological Fallacy

- 1) Morphology not dynamics is taken as fundamental
- 2) Scaling is reduced to the isotropic (self-similar) special case

