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Scale invariant geometric sets: Fractals
The simplest fractal, the Cantor set s
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Early Geophysical applications of
Fractal sets

Set: Black / white, single fractal dimension
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A fractal Koch curve ([Koch, A fractal Peano curve, reproduced from
1904]), reproduced from [Steinhaus, 1960] showing how a line
[ Welander, 1955] to illustrate the (dimension 1) can literally fill the plane
mixing of a two dimensional (dimension 2), illustrating how streams

fluid. can fill a surface.




Isotropic Scale Invariance and fractal sets

Fractal Dimension:

n(L) o< LD Number of points
L
p(L) = nig) =< [P =[ ¢ Density of points

d=dimension of space
D= fractal dimension of set
C=d-D= fractal codimension

Scale invariance:

n(AL)= A"n(L) D=scale invariant

Same form after zoom by factor A.




Meteorological measuring network

Fractal set: each point is a 9962 stations (WMO, 1986)
station
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(1) Fractal Codimensions:
Geometric

The notion of fractal codimension C, can be defined both statistically and geometrically. The
former 1s more useful and general since it applies not only to deterministic but also to stochastic
processes.

Let ACE (the embedding space) with dim(E)=D and dim(A)=D,(A)  Then the

codimension Cr(A) is defined as:
C.(A)=D-D.(A)

This definition corresponds merely to an extension of the (integer) codimension definition for

vector sub-spaces, i.e., E1 and E» being in direct sum (1.¢., E,NE, =9 ):

E=E ®E, = codim(E))=dim(E,)

Example: E;= line, E,= plane, E= 3-D space
a line (D¢(A)=1) in three dimensional space: dim(E)=D=3, hence: C.(A)=3-1=2



(2) Fractal Codimensions:
Probabilistic

The codimension Cr can be introduced directly.

Consider the (scaling) behaviour the probability (“Pr”) that a ball B, (of size/=L/\)
intersects the set 4 is:

Pr(B, N A) ~ AW

where B, = ball of size and /=L /A and Cr is thus directly defined as an exponent measure of

the fraction of the space occupied by the fractal set 4 (size L) in an embedding space £ which
can even be an infinite dimensional space.

[ A=L/I

E= embedding space




Geometric versus probabilistic

Relating the two definitions

Since the probability of the event (B,NA) 1s defined as:
N(B, nA)" A7™
N(B,NE) A"

T Numberofhballs B, needed to cover E

refers to for example the number of balls B, needed to cover the set 4 and

Number of balls B, needed to cover A

Pr(B, NA) ~

where N(B, N A)
N( B, N E) is the corresponding number for the entire space. It 1s easy to check that when
Cr(A) <D =dim(E) <e° w0 two definitions are equivalent:

C,.(A) £ D < oo, {definition 1 = definition 2} V D, >0

However, when C.(A)>D, then they no longer agree since it implies D;(A)<O which is impossible.



Multifractal fields:
Cascades and
Multifractals




Multifractality and Functional Box
Counting

NT(L) ~ L_D(T)
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-Monofractal: D(T) <2, constant
-Multifractal: D(T)<2, decreasing

Box counting low threshold
(large D)

Box counting high threshold
(low D)




Functional box counting on French
topography: 1 -1000km

Slope=2
(required  for 1\0\ T
classical

geostatistics - § ‘ Multifractal:
regularity  of 1 A slopes vary with D(T
Lebesgue - . threshold NT(L)zL ( )
measures) - - .

z 100m Systematic

resolution
dependence
] km

Implications for geostatistics:

The areas A; exceeding a given threshold decrease as the resolution becomes finer (decreasing L):
A= LN, =L C(T)=d-D(T)
Unless C(T) = 0, the areas depend on the subjective resolution L; the reference lines indicate that for the topography, all
the regions defined by the thresholds have C(T) = d-D(T) >0 so that they have systematic resolution dependencies.




Functional Box counting on 3D radar
rain scans

Classjcal geostatistics

Increasing Z
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Radar reflectivity thresholds increasing (top to bottom) by factors of
2.5 (data from Montreal).



Aircraft temperature tramnsect
(12km altitude)
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Degrading the resolution
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Homogeneous
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Beta model

An initial attempt to handle intermittency
reduces it to the simple notion of “on/off”
infermittency, i.e. a cascade with the simple
alternative alive/dead of the offspring.

This leads to a confinement of the turbulence to a tiny support; a very small subregion of the flow. The right hand
side of the figure shows the result of such a stochastic cascade obtained by randomly multiplying the energy flux of
a “mother” eddy to obtain that of the “daughter” eddies either by 0 (dead sub-eddy) or by a positive value A

(corresponding to an active sub-eddy, with fixed probability . A,°
In this model, we divide the spatial scales by A, (here A, = 2) and then flip coins to determine the on or off

state; more precisely:

Pr(ue:}f):};c ~
Each step: 0 0 o / \ N
= —1_""¢ g Py Daughter e . g,
Pr(ue=0)=1-A, B A
After n steps: ¢, =]]ue, DJ oty

J=1

(“Pr” indicates “probability”). The nonzero value is taken agie=4; so that the meadue)=1 ;
this implies a scale by scale conservation of the flux €.

n n
After n steps: 7\« — 7\;0 Pr(alive)z(Kac) =A"° Relation to dimension: N,.=N, Pr= AMA =N D=d-c



Beta model

In this example, the
probability that an
eddy will remain alive
is A, ¢ =0.87 (using
the scale ratio at each
step A, = 4 here and
the codimension C =
0.2).




Alpha model

The oo model is a two state (binomial) process with pe = either A,¥* or A,¥” where v,>0
corresponds to a boost (ue>1) and y. to a decrease (ue<1) .

Pr(pe =A%) =A;°
Pr(pe=A))=1-2;°

Although the oo model apparently involves three parameters (vy,, Y, ¢), due to the
conservation constraint:

(ue)= Ay Al +(1- A% Ay =1

We can see that the B model is
recovered in the limit Y_—>—
which is the same as Y, —C




The o model

Simulations: multiplicative introduction of small scale details
(low resolution to high)

! 1

“boost”

“decrease”

S+L 1983




Alpha model
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From top to bottom every second cascade step is shown (a factor of A,?) is shown, 10
steps in all, the total range of scales is 21° = 1024). Notice the changing vertical scales



o model
Y, =c-0.09 log

universal multifractal
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General cascade statistics

Characterize the statistics of ue by K(q): <ugq> = }\,(Ifiq)— Scale ratio of each cascade step

\ The notation “p” indicating “multiplicative increment”; it is
analogous to the use of the “A” to denote an additive
increment.

(er)=( T e ) = T (meg) =(uer) =25
j=1

.

J=1

S

We can now write the general expression for the statistical properties after a total

scale range A:
Overall scale ratio since

K the cascade started:
(e1) =150 =

This is the basic formula for cascade statistics. The specification of the statistics of |Lg,
and hence of & via statistical moments is equivalent to their specification by
probabilities.



The cascade generator: 1

The overall characterization of the statistical properties is conveniently through the
“moment scaling exponent” K(q):

K(q)= Log,, <u8q> = L0g<u8q> / Log\,
— L0g<u8q >n /Log(?»o )n = L0g<€;’> / Logh

Introducing the (random) cascade “generator” I', the logarithm of the multiplier:
I'=Loge,

K(q) is is the (Laplace, base A,) second characteristic function (“cumulant generating

function”) of I":
K(q)=log, <e"r>




Examples of second characteristic
Functions

Ex.1 Gaussian

Base e Laplace characteristic function

q202
K(g)=log(e")="=

1

p(x)zae

K(q)=-log(1-g)-log(l+q); -1<q<I

Ex.2 Exponential: —|



Properties of the Moment scaling

exponent K(q)

1) In order to see the general shape of the K(g) function, we may first note that conservation
from one scale to another requires K(1) = 0:

(g,)=1=A" hence K(1)=Log,(e,)=Log,1=0

2) In addition, because any positive number raised to the zero power is one, we have <1> =1,
hence K(0) = 0. <8§i> —1=2"

3) Finally, a basic property of second characteristic functions is that K(g) must be convex, i.e.
K’ (g)>0; this can be shown directly by doubly differentiating K(q) = log<e >/log\.

The typical K(q) looks something like the next slide which shows the K(g) for the o
model and the universal multifractal models in the fourth and fifth columns of the
earlier example. The models are tangent to each other at g =1 because the
derivatives at g = 1 were deliberately chosen to be equal to each other. This value:

C,= K'(1) tangent at the mean

C, = “the codimension of the mean”; a characterization of the variability near the mean

We can already use this idea to give a “local” (in g space) definition of the “degree of
multifractality” o o= K”(l)/K'(l) Curvature near the mean



Comparison of the K(q) for

examples

K(g)

| Universal
0.3 multifractal

model (o= 1.8 o model (blue

| ¢, =0.037) c=02,7v,=

| 0.11 (2" row
0.2'. from top)
0.1

| B Model with ¢ = ¢,

1 2 3 4
C,=K'(1)

o= K”(1)/K’(1)



Universality: How many

Answer| Date References Explanation Parameters

1 1941 | Kolmogorov Av, ="\ H=1/3
(Homogeneous turbulence)

2 1962 | Kolmogorov-Obukhov, < q> _ K@) H,u
(lognormal model) &)=

K(q)= %(q2 -q)

2 1964 [ Novikov-Stewart, K(g)=C,(g-1) H,C,
Mandelbrot, Frisch et al,
model

oo 1974 | (Mandelbrot, 1974) K(q) Any K(q) convex

with K(0)=K(1)=0

parameters for turbulence?

Basin of attraction




Routes to universality:
1) Densification of scales

Discrete in scale
(ex. B, oo models)

- Continuous in

scale




Routes to universality:
2) “Mixing” of independent discrete
cascades

81 82 1/b 83
N N
€= Hi N independent cascades,
-1 Ay renormalized by a,, b,

1
1 N
For the generators I"=loge I'= _Z(Fi _logaN) Normalized, centred sums
i=1



Universality in cascades:
a “multiplicative central limit theorem”

Technical difficulty: the cascade requires a scale by scale conservation
principle, otherwise there are no well defined small scale cascade limits, and it

turns out that this normalization is in contradiction with the normalization
required for central limit convergence.

Cascade convergence: <ue> =1 hence <e?!'> =1
Recall:

Central limit convergence: <AI'> =0, hence <logue> =0 A" = logpe

However, due to the convexity of the logarithm function, for any probability
distribution of pe which is constrained such that <ue> =1, we have necessarily
<AI' > = <logue><0



Levy Generators (2)

The final normalization step needed for small scale convergence (analogous to
the log-normal derivation: K(g)->K(qg)-gK(1)) leads to:

The local (near the mean)

K'(l =A, (OL—I)=C1 curvature characterization is
. , satisfied:
K"()=A0(a-1)=0K'()=0aC,  pa)=c, o-k'1)/K1)
It is global.

Hence:

(for a= 1, using 'Hopital’s rule for the limit a->1, we have C,qlogg).

Note that when <2, and g<0, then ; this is a consequence of the extreme Lévy tail
on the negative (but not positive) fluctuations of loge. The possibility (even

likelihood) of: <£/c{>%oo

for g<0 means that extreme caution should be used when analysing negative
moments of empirical data.




K(q) for universal multifractals

K(q)/C =(q"~q)/(a—1)

K(q)/Cq versus q
20
g
1.5 //A
Y y o
7 7 |= %
O 7 06000
~ 05 _ 0:8000
< a=2.0 — =
N / 13000
0.0§ "Z ———  2.0000
'0.5 /
=0
-1.0
0.0 0.5 1.0 1.5 2.0
q

Universal K(g)/C, as a function of g, for different a values from 0 to 2
by increments of Ao = 0.2.




Data Analysis




Fluctuation statistics and structure
functions

The space-time variability of natural systems, can often be broken up into various
“scaling ranges” over which the fluctuations vary in a power law manner with
respect to scale. Over these ranges, the fluctuations follow

AT =@, A
AL\ The flux at resolution At

Using Fluctuations:

S, (Ar) = <AT(A;)‘1> _ <(pit> At =~ A9 <<PZ,> _ (Ait)m); E(q)=qH -K(q)

(generalized, qth order) Structure function

Hence, we seek H, K(q)

Cl (0]
oc—l(q -q) i.e. we seek H, C,, o

With universality: K(CI) =




Aircraft structure function estimates
4| Log S(Ax)

= Log, S(Ax)

T
0 | 1 > 3
1000km LogloAX(k m)

4 km 40 km

Fluctuations as differences

Temperature (Upper left),
humidity (upper right), log
potential temperature (lower
left)

The structure functions of order g =0.2, 0.4, ..., 1.8, 2.0 are shown (from bottom to top). All have been nondimensionalized by dividing by

the absolute mean first difference at the finest scale (280.m)



E(q)

S q
h
Log0
1.5
T
ol &(1)=H-C,
S(1)=H Co (.
0.5 T " 1) = o, &(a)=gH -K(q)=qH -——(q"~q)
1.'..2.'..3....4q

The structure function exponents for T, log0, h from the aircraft data analysed in the previous slide.
The exponents were estimated by fitting the structure functions over the “optimal” range 4 — 40 km.



Difference, Tendency, Haar fluctuations

Differences: The difference in temperature between t and t+At

Tendency: The average of the temperature (with overall mean
removed) between t and t+At

Haar: The difference between the average of the temperature
from t and t+At/2 and from t+At/2 and t+At

Relations: When 1 > H > 0: Haar = difference
When 0 > H > -1: Haar = tendency



Fluctuations and wavelets

AT(3) = | T(t')xp‘def
mother wavelet

Difference
(AT),, =T(t+At/2)=T(t-At/2) W(t)=08(r—1/2)-8(t+1/2)
Tendency / Anomaly
(67),y = | PO TO=T0-TE) ¥t B0 a0 g SR

| is the indicator function

1/72; 0<t<1/2

Haar 2 t+At/2 , ) t+At , , )
(AT)Haar:E J T(t )dt — J T(t )dt Y(r)= -1/2; -1/2<t<0

t t+At/2 0; otherwise

Relation between them: (AT) — (A(AT)tend )diﬁ

Haar



Haar, tendency and AT(N):ALJT(t')\P(ﬂjdt'
poor man’s wavelets t

P (t)

Haar

1

/ Poor Man’s

1/2

»
<} »
- . . . . -

eyt e /T




Spectrum of fluctuations

Fluctuations: AT(At)ziJT(t') (tA_tt)d ’

Fourier transforms KT(Q)At) = T((x))‘l’((x))

Ensemble averaging

of modulus <‘AT (0A?) ‘ > <‘T ‘ >“P(m)

squared:

2

2

Spectra EAT ((DAt) = ET ((D)‘LP((D)

. —2 . .
If the maximum of “P((o)‘ Occurs at ®,,, then the maximum in E,; may be near o, At



10 Log,,®

difference

®® tendency
(02

Haar — \Pdiﬁ” \Ptends(__

Haar

Maximum of Haar

S~ .
- Real space (convolution)

—  Fourier space (product)

~2 |
Logm‘\ll‘ -65

JATATA

e ——




Convergence of fluctuation variance

2

Spectra EAT (O)At) — ET ((D)“‘I'/IT(_D/)

|

For scaling processes ET (0)) ~ (0_(1+2H/) ‘% ?

~

oo w—0

@) — oo

low high

<AT2> = jEAT (0)dw Converges only if: H >H >H
‘ bl
v

J

Parseval’s theorem




Various wavelets

Poor 8(r—1/2)-8(t+1/2) 2sin(®/2) =~ =0 O<H’<1
man’s
(first
difference)
nd . 2 2 - ’
2 %(5(t+1/2)+5(t—1/2))—8(t) sin (w/4) =~ O =0 O<H’<1
difference
Tendency I, (1) 23 ) - -1<H’<0
[-t/2.7/2] ) 2) . ~ = =
I[—1/2,1/2](t)_ . T>>1 2( ((’)) ( )] =0 >l )
—| S1n E —T SIin
()
-1 ’
Haar 1/2; 0<r<1/2 2im-‘sin2(%) = ~m -1sH'<1
y(r)= -1/2; —1/2<r<0
0; otherwise
] 2 -1 ’
Quadratic —-1/3 1/3<t<1 i(’.’)sing—sin(:)j =10 = -1<H'<2
Haar ()= 2/3;  _1/3<1<1/3 30 3
VW= s —isi<-1/3
0; otherwise
FirSt \P(Z)ocie_tz/z (De_wZ/z = e_wz/z —OOSH'S]_
derivative di
Gaussian
. 2 ) 2 2 2 7
Mexican \I,(t)xd_eft P w2e " ~® o2 —=<H'<2

Hat dr*



Range of exponents over which average fluctuations at scale At corresponds to frequency 1/At

Fluctuation /(AI> = ((p)A\ﬁ’» - constant E(m)=<|}(m)|2>:w—ﬁ B= 1+2H—K/{2)

Statistic Range of H Range of 3 Comment Multifractal
“correction”
Spectrum oo < H < oo —o0 < B < oo E((D) ~m P ,\
H'=H-K(2)/2
Difference O<H<1 1<B+K(2)<3 “Poor man’s wavelet”
Tendency Fluctuation -1<H<0 -1<B+K(2)<1 Average with overall mean

removed (standard )
deviation= “Climactogram”, Slmple .

also called the “Aggregated interpretation
Standard Deviation”)

Haar -1<H<1 -1<B+K(2)<3 Difference of means of first
and second halves of
interval

Detrended Fluctuation -1<H<(n+1) -1<B+K(2)<3+2n Also multifractal extension
Analysis (DFA, polynomial (MFDFA), usually linear: n=1,
ordern Not a wavelet

Mexican Hat Wavelet 2nd Derivative of a Gaussian

o< H <2 —o<B+K(2)<5

Generalized Haar -m<H<n 1_2m<B+K(2)<3+2n Interpretation not simple



10° \ Atmospheric dynamics

1 hour- 10° yrs: Mitchell 1976 (grey, bottom)
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H=-0.8

Hx=-0.4

Megaclimate
Veizer: 290 Mys - 511Myrs BP (1.23Myr)

Megaclimate
Zachos: 0-67 Myrs (370 kyr)

Macroclimate
Huybers: 0-2.56 Myrs (14 kyrs)

Climate
Epica: 25-97 BP kyrs (400 yrs)

Macroweather
Berkeley: 1880-1895 AD (1 month)

Weather
Lander Wy.: July 4-July 11, 2005 (1 hour)



Understanding the Fluctuation
exponent H




The fractal H model
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Fluctuations increase
with scale
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Weather and climate
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