Haar Fluctuations Scaling Analysis Software Without
Interpolation
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Mathematica Function HaarNolnterpolate

1 Basic Summary

This function performs a scaling analysis of fluctuations defined through the Haar Wavelet, that
is for a given time interval the difference between the average of the first half and the second half
of the interval. This allows us to estimate the mean and the RMS scaling exponents H without
using interpolation, which assumes that the curve is continuous and differentiable between
points. Such an assumption is problematic since in the small scale limit of a scaling regime,
the mean derivatives of order greater than H diverge. Therefore, even linear interpolation may
give spurious results as most relevant atmospheric regimes have H smaller than 1 and thus, any
linearly interpolated part of the series will locally have H equal to 1. This software instead
rejects improper fluctuations on the basis of the ratio € = mizjj which is the ratio between
the j** and the j + k' element in the series; regular sampling implies € = % A parameter
€min Was chosen so that fluctuations with € € [€min, 1 — €min] would be used, but those with
€ ¢ [€min, 1 — €min] would be rejected . It was found that €., = % was a good compromise to
increase the number of fluctuations considered without losing too much precision in scale. (See
Appendix A)

2 Input

This function requires 5 inputs: HaarNolInterpolate|Time, Field, Calibration, Lower PointsToDrop, Upper P

e T'ime is the series containing the temporal position of the points in the field under con-
sideration.

e [ield is the field under consideration itself, for example a serie of temperature values.

e Calibration is a scalar which multiplies Time, allowing to adjust for units. For example,
if time is given in kiloyears, C'alibration would be set to 1000 to transform T'ime in years.

e LowerPointsToDrop indicates how many points to drop, starting in order from the high-
est resolution, before performing the fit for H

e UpperPointsToDrop indicates how many points to drop, starting in order from the lowest
resolution, before performing the fit for H



3 Output

The function returns the following output
e The number of fluctuations used in the analysis.

e The total number of points : The number of time resolutions for which fluctuations were
calculated.

e The range over which the fit for H was performed.
e H : the mean exponent H

e The RMS exponent = £2): the RMS exponent. (If C7 = 0, this is H, otherwise the

2
C K)o
correction =5~ is given.)

e Derivative C : The codimension of the mean calculated from &.

e « from psipp(1) : Multifractality index calculated from ¢&.

e (4 graph slope method: The codimension of the mean calculated from the Cy graph.
e alpha from graph slope : Multifractality index « calculated from the C graph.

e Schmitt o : Multifractality index « calculated using the second derivative of £(¢) at ¢ = 0.
(Only valid for o > 1)

4  Example 2D

HaarNolnterpolate The analysis was performed on the EPICA temperature time series,
which was reconstructed from 680 concentrations.
Input

e Time = Epical[All, 3]] (Series of years BP at which the ice core was sampled)

Field = Epical[All,5]] (Series of the reconstructed temperature)

Calibration = 1 (The time series is already given in years)

LowerPointsToDrop = 27 (Removed the first 27 points before fitting)

Upper PointsToDrop = 27 (Removed the 27 last points before fitting)



Output

In[281= HaarNoInterpolate[Epica[[A11, 3]], Epica[[A11, 5]], 1, 27, 27]
the number of flucutations used in the analys=sis i=s = 285345.
The total number of points i=s 93
in the specified units

Fits are over the range 316.228 to 2511E.8

H= 0.483155

the BMS exponent= £(2)/2= 0.508424 the difference with H is K(2)/2 = -0.0252175
derivative Cl= -0.0318343
o from psipp(l) = 1.58164
Cl1l graph slope method =-0.0318052
alpha from graph =slope = 1.573&8
Schmitt == 1.65656
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Figure 1: Input and related output of the function HaarNolnterpolate applied to the temperature series re-
constructed from the EPICA core. Notice that the fitted lines on the graphs only appear over range on which
the fit was performed for H, which is from 316 years to 25119 years. We can distinguish three scaling regimes:
Macroweather, Climate and Macroclimate. H was found to be 0.48 for the Climate regime which was in-
vestigated here, that H > 0 means fluctuations increase with scale. In the Macroweather and Macroclimate
regimes, H < 0, meaning that fluctuations tend to cancel each other out at those time scales, i.e. less than 316

years or more than 25119 years.



Appendix A of [Lovejoy, 2014]

An interpolation-free algorithm for estimating Haar
fluctuations:

Paleotemperatures are typically nonuniformly sampled in time. Sometimes -
such as in the case of the Epica series used in fig. 1b - the problem is due to the
compression of the ice with depth and the problem can be somewhat alleviated by
sampling the deeper reaches of the core at higher rates (e.g. the high resolution
section of the GRIP core shown in fig. 2b). However, the usual remedy is to
interpolate the series and then to resample it at a uniform temporal
interval/resolution. ~While for many purposes this may be adequate, for either
spectral or fluctuation analyses it may lead to biases and spurious results. The
reason is that interpolation assumes that the curve is not only continuous between
points, but also that the series T(t) is differentiable (in the common case of cubic
spline interpolation, up to third order!). However in the small scale limit, in a
scaling regime, the mean derivatives of order >H diverge. Since we have found
empirically that all the relevant atmospheric regimes have H<1, even linear
interpolation may give spurious results. Indeed, any linearly interpolated part of
the T(t) series will at least locally have H =1 since over such segments, AT(At) = At.
Therefore if these regions are too numerous, including the fluctuation statistics over
linear segments will introduce biases.

One of the many advantages of Haar fluctuations is that they are quite easy to
estimate without any interpolation while accurately taking into account the
resolution of the data. We now describe the simple algorithm used in figs. 4b-e, 5
(note that several of these series were already analysed but using interpolation).
Assume that there are N measurements of temperature T(t;) at time ¢t; where i is an
index 1 through N. Define the running sum S;:

§=21(1) (A1)

Jjsi

Consider an index j and an even number k. The j, k fluctuation AT;, over the

interval [¢;, t.k] can be estimated as follows. First determine the sums of the T(&;)
over the first and second halves the interval:

AS" = Siern =S5 AS® = Siek = Sjen (A2)
in the case of regular sampling, the ratio:
gztj+k/2_tj (A3)
Ly =15

has the valuee=1/2.
The Haar fluctuation is simply the average of the first half minus the average of
the second half of the interval and can thus be estimated as:



AT,, = 2 (¥ -s2) (A4)

ik —1;

However, if € is too far from 1/2, this estimate may be poor. Therefore, in the
calculation of the statistical moments we should only keep the corresponding
fluctuations on condition that emin<€<(1-€min) where 0<€min<1/2 is a parameter that
can be adjusted so as to make the condition as restrictive as we like: exactly uniform
sampling corresponds to the limit emin ->1/2. Decreasing €min has the effect of losing
precision in the scale At, hence it smooths the S(At) curve. However, taking €min too
close to %2 will result in the rejection of too many fluctuations with the consequence
that the statistics will be poor. In the present case, it was found that generally €min =
1/4 was a reasonable compromise (see fig. 1). One can check the accuracy by seeing
how much the statistics change when €min is varied (if they don’t vary much then the
choice of emin is acceptable). Note also that as usual, the fluctuations are multiplied
by an extra “calibration” constant (taken throughout this paper = 2). This ensures
that they are quite close to differences in regions where H>0 and close to tendencies
(averages with the means removed) in regions where H<0. Once the fluctuations
are estimated, Sy(At) can be estimated by “binning” the fluctuations into “bins” with
At regular spaced logarithmically. For each bin, the various powers of AT are
averaged, in our implementation of the algorithm we used 20 bins per order of
magnitude in At (the software available from
http://www.physics.mcgill.ca/~gang/software/index.html).

While the above procedure essentially solves the problem of “holes” in the
series, it does not remove possible biases that arise from systematic sampling
nonuniformities such as those arising from cores with high temporal sampling rates
near the surface and systematically lower rates at depth. When applied to such
series, the small At part of the S(At) function will be sampled from the top part of
the core where all the high resolution data lie. Therefore the high frequencies will
be biased towards the near surface statistics. However, if the statistics are fairly
homogeneous in time - as they typically are (see fig. 5)- then this is unimportant
(see however [Lovejoy and Schertzer, 2013] for evidence of exceptional Holocene
statistics in Greenland).
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Figure 1: A comparison of the Epica analysis using a uniform sampling on the
linearly interpolated data using the same number of data points as in the original
series (5788 points, interpolated resolution 138 yrs), magenta, and the result of the
interpolation free algorithm described here using €min = 0.25 (blue). The main
differences are at the small and large At's. The magenta interpolated curve is
reproduced from [Lovejoy, 2013].
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