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Strong confinement of charges in few-electron systems such as in
atoms, molecules, and quantum dots leads to a spectrum of
discrete energy levels often shared by several degenerate states.
Because the electronic structure is key to understanding their che-
mical properties, methods that probe these energy levels in situ are
important.We show how electrostatic force detection using atomic
force microscopy reveals the electronic structure of individual and
coupled self-assembled quantum dots. An electron addition spec-
trum results from a change in cantilever resonance frequency and
dissipation when an electron tunnels on/off a dot. The spectra
show clear level degeneracies in isolated quantum dots, supported
by the quantitative measurement of predicted temperature-depen-
dent shifts of Coulomb blockade peaks. Scanning the surface
shows that several quantum dots may reside on what topographi-
cally appears to be just one. Relative coupling strengths can be
estimated from these images of grouped coupled dots.

nanoelectronics ∣ single-electron charging ∣ shell structure ∣
electrostatic force microscopy

The ability to confine single charges at discrete energy levels
makes semiconductor quantum dots (QDs) promising candi-

dates as a platform for quantum computation (1, 2) and single-
photon sources (3). Tremendous progress has been made not only
in understanding the properties of single electrons in QDs but
also in controlling their quantum states, which is an essential pre-
requisite for quantum computation (4). Single-electron transport
measurements have been the main experimental technique for
investigating electron tunneling into QDs (5). Charge sensing
techniques using built-in charge sensors, such as quantum point
contacts (6), complement transport measurements because lower
electron tunneling rates can be monitored with even real-time
detection being possible (7). It is instrumentally challenging to
study self-assembled QDs via conventional transport and charge
sensing methods because of the difficulty in attaching electrodes.
Although progress is being made (8–12), these techniques have
very small yield and therefore make it difficult to assess variation
in QD electronic properties. Compared to typical QDs studied
via transport measurements, in particular lithographically de-
fined QDs, self-assembled QDs can be fabricated to have smaller
sizes, stronger confinement potentials, and a more scalable fab-
rication process, all of which make them attractive for practical
applications.

In this paper, we focus on an alternative technique for studying
QDs that is better suited for self-assembled QDs: charge sensing
by atomic force microscopy (AFM). Charge sensing by AFM is a
convenient method to study the electronic structure of QDs be-
cause nanoelectrodes are not required and large numbers of QDs
can be investigated in one experiment. Termed single-electron
electrostatic force microscopy (e-EFM), this technique relies
on the high force sensitivity of AFM to detect the electrostatic
force resulting from single electrons tunneling into and out of
the QD. It was first demonstrated on QDs formed in carbon na-
notubes (13, 14) and later applied to self-assembled QDs (15, 16)
and also to gold nanoparticles (17, 18). We focus on epitaxially

grown self-assembled InAs/InP QDs in the few-electron regime.
By using a dissipation model, we find compelling evidence for
the existence of electronic degeneracies (i.e., shell structure)
by measuring an effective temperature-dependent level repulsion
of Coulomb blockade peaks in the AFM cantilever dissipation.
This repulsion is a manifestation of the asymmetry between add-
ing or removing electrons to or from a degenerate level on the
dot; whereas similar effects were predicted for the conductance
through a QD (19), we believe this to be a unique quantitative
measurement. Further, we use the model to quantitatively extract
various properties of both individual QDs, such as the tunneling
rates and charging energy, and coupled QDs, such as the strength
of coupling.

We study uncapped self-assembled InAsQDs grownon a 20-nm
InP tunnel barrier, below which a two-dimensional electron gas
(2DEG) is formed in an In0.53Ga0.47As quantum well. A dc-bias
voltage, VB, is applied to the 2DEG with respect to the grounded
conductiveAFMcantilever tip. Fig. 1A shows the sample structure
and experimental setup. The AFM cantilever is driven at its me-
chanical resonance frequency, ω0∕2π ∼ 166 kHz, with constant
oscillation amplitude (20). The voltage drop, αVB (α < 1), across
the tunnel barrier between theQDand the 2DEG is only a fraction
of VB, with α ¼ αðx;y;zÞ being a function of the tip position. The
tip–QDgap is tens of nanometers wide so that tip–QD tunneling is
negligible. We thus have a single-electron box setup: The electro-
chemical potential of the 2DEG, μ2DEG, with respect to the QD,
μQD, is set by αVB and a negative bias increases the number of
electrons,N, on the QD in integer steps whenever the electroche-
mical potentials are aligned (called a charge degeneracy point).
Tunneling between 2DEG and QD is suppressed by the electro-
static energy cost,EC, of adding or removing an electron to theQD
except near these charge degeneracy points (Coulomb blockade).
The heart of the e-EFM technique lies in the fact that oscillations
of the AFM cantilever modulate α and hence are equivalent to an
effective oscillating gate voltage applied to the QD. Thus, motion
of the cantilever induces a modulation of N that will be slightly
out of phase with the cantilever’s motion (a result of the finite
response time of electrons on the dot). The electrostatic coupling
between QD and cantilever tip implies an electrostatic force
proportional to N acting on the tip, the net result being both a
frequency shift,Δω, and additional dissipation, γ, of the cantilever
(21). These effects are maximal at charge degeneracy points
because here N can easily change in response to the effective
oscillating gate voltage.
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Fig. 1B is an example of γðVBÞ at 4.5 K with the tip positioned
over the upper QD imaged in Fig. 1D–E. The γðVBÞ is equivalent
to the energy addition spectra usually obtained from linear
conductance or capacitance spectroscopy measurements (22). Si-
milar to those measurements, Coulomb blockade peaks in γ occur
near charge degeneracy points of the QD. The peak positions are
suggestive of the addition spectrum of a 2D circular QD with a
parabolic confinement potential; each peak is separated by twice
the capacitive charging energy, 2EC, with a further splitting be-
tween peaks 2 and 3 and between peaks 6 and 7 corresponding
to the energy difference between shells, ΔE. This type of shell
structure has been previously observed in InAs QDs (8, 9, 23,
24). Fig. 1 C–E shows the topography, Δω, and γ images of an
elongated InAs island. The peaks in the γ-VB spectra radially
surround the QD center so that the ring furthest from the center
corresponds to the first electron entering the QD; the rings
themselves are contour lines of constant αVB. Multiple sets of
concentric rings appearing in the Δω and γ images indicate multi-
ple QDs in the island. Such observations would not be as easily
identified via other experimental means (25). The tip–2DEG
capacitive force adds a large background in the Δω signal that
locally varies because of topography (15, 26), making it advanta-
geous to focus on the γ for image analysis.

Fig. 2A shows γ and Δω as a function of VB with the tip posi-
tioned over the upper QD imaged in Fig. 1D–E at 30 K. Whereas
the energy addition spectra shown in Figs. 1B and 2A are consis-
tent with the expected shell structure for a 2D circular QD with a
parabolic confinement potential, we obtain much stronger evi-
dence of the shell structure from the temperature dependence
of the peak positions. Theoretically, temperature-dependent
shifts of Coulomb blockade peaks are expected whenever one
has degenerate single particle levels, as predicted for the conduc-
tance peaks of a spin degenerate level (19). These shifts are a
consequence of the asymmetry between adding or removing
electrons; the direction of each peak shift versus VB depends
on whether there are more ways to add or to remove an electron.
These asymmetries for a twofold degenerate s shell and a fourfold
degenerate p shell (expected for a circular QD) are illustrated in
Fig. 3. The size of each shift is proportional to temperature, which
enters through the Fermi distribution of electrons in the 2DEG,
with a numerical prefactor that depends on how asymmetric the
addition and removal processes are. The result is an effective
temperature-dependent energy level repulsion: The peaks in
each shell move apart as temperature is increased. Furthermore,

our theoretical analysis (SI Text) suggests that this effect should
be enhanced in the tunneling-induced cantilever dissipation com-
pared to the conductance. Our measurements of these tempera-
ture-dependent peak shifts are in excellent agreement with
theory; we are unaware of any experiments where these effects
have been observed.

We model the dissipation on the cantilever by using linear
response and a master equation describing the charge state of
the QD in the regime of weak coupling (19, 27). Details of
the approach are provided in SI Text. Near a charge degeneracy
point between N and N þ 1 electrons on the QD where the extra
electron occupies a nondegenerate single particle level, the dis-
sipation is (18, 28)

γ ¼ ω2
0A

2Γ
k0kBT

1

ω2 þ Γ2
f ð1 − f Þ; [1]

where ω0 and k0 are the intrinsic cantilever resonance frequency
and spring constant, respectively, ω ¼ ω0 þ Δω is the measured
resonance frequency because of forces on the cantilever, and
f ¼ 1∕ð1þ expðE∕kBTÞÞ is the Fermi function evaluated at
E ¼ μQD − μ2DEG ¼ eαðVB þ V 0Þ (VB ¼ −V 0 is the point of
charge degeneracy). The temperature, Boltzmann constant,
and electron charge are described by T, kB, and e, respectively.
In the nondegenerate case, the rate to add an electron to the QD
is Γþ ¼ Γf and the rate to remove an electron is Γ− ¼ Γð1 − f Þ,
where Γ is the 2DEG–QD tunneling rate. Last,
A ¼ −2EC

VB
e ð1 − αÞ ∂Ctip

∂z is the sensitivity of the potential on
the QD to the cantilever motion and Ctip is the tip–QD capaci-
tance. We stress that Eq. 1 applies to each dissipation peak
independently: Γ and A are obtained separately for each peak
from the data with no assumption of constant EC.

Whereas it describes the broadening of each peak very well,
Eq. 1 only takes into account a single nondegenerate level. More
generally, suppose the QD is occupied by N þ 1 electrons, with
nshell þ 1 in the valence shell. If this shell is ν-fold degenerate,
then near the charge degeneracy point between N and N þ 1
electrons on the QD, the dissipation is

γðVBÞ ¼
ω2
0A

2Γ
k0kBT

ðnshell þ 1Þðν − nshellÞ
ω2 þ ðϕΓÞ2

f ð1 − f Þ
ϕ

; [2]

where

A B

C D E

Fig. 1. e-EFM VB spectra and images. (A) Schematic
of the oscillating cantilever with pyramidal tip push-
ing electrons on and off the QD when the mean bias
voltage is just enough to lift the Coulomb blockade.
(B) γ-VB spectra taken at 4.5 K over upper QD shown
in E. Peaks in the spectra are always separated by the
charging energy, but shells are additionally sepa-
rated by ΔE. After passing each peak from right to
left, the number of electrons, N, in the QD increases
by one, with the N ¼ 7 state after the leftmost peak.
The energy difference between the first two peaks is
31 meV, and the difference between peaks 2 and 3 is
42 meV, so that if 2EC between peaks 2 and 3 is as-
sumed to be 31 meV, then ΔEsp ¼ 11 meV. (C) Topo-
graphy of the InAs island with the approximate
locations of the QDs marked by Xs. (D and E) The
simultaneously recorded frequency shift and dissipa-
tion images of the structure in C at 4.5 K taken at
−8 V. (Scale bar: 20 nm.)
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ϕ ¼ ðν − nshellÞf þ ðnshell þ 1Þð1 − f Þ; [3]

and Γ is the tunneling rate to one particular state on the QD,
assumed to be equal for each degenerate state within the ν-fold
degenerate shell.* Note that nshell is the number of electrons oc-
cupying the given shell and not the total number of electrons on
the dot, N. Because of the factor ϕ, γðVBÞ is no longer symmetric
about its maximum, and the different coefficients of f and 1 − f in
ϕ reflect that the rates to add and remove electrons are now
asymmetric: Γþ ¼ ðν − nshellÞΓf and Γ− ¼ ðnshell þ 1ÞΓð1 − f Þ.
Note that a nondegenerate level corresponds to ν − nshell ¼
nshell þ 1 ¼ 1, for which Eq. 2 reduces to Eq. 1. The asymmetry
in Eq. 2 causes each peak in γðVBÞ to be shifted by an amount
proportional to temperature, because a dissipation peak maxi-
mum roughly corresponds to maximal tunneling on and off the
dot, and this is achieved when the addition and removal rates
are equal.† The connection between the peak shifts and asym-
metric addition and removal rates is depicted schematically in
Fig. 3. By fitting γðVBÞ (e.g., Fig. 2A) to Eq. 2, we extract α, al-
lowing us to convert the VB axis into energy. This is done for all of
the thermally limited peaks, yielding α ¼ 0.036� 0.003. Fig. 2B
shows γðVBÞ at different temperatures together with the fitted
curves.

The role of ϕ is further elucidated by the relation

ϕΓ ¼ −2ω0

Δωdip

γ
; [4]

where Δωdip is the size of the frequency shift dip because of the
single-electron tunneling. The ratio in Eq. 4 defines an inverse
time scale set by the relative in-phase and out-of-phase parts
of the electrostatic force; this is simply Γ for a nondegenerate

QD (18, 28) but modified by degeneracy through the factor ϕ.
By using Eqs. 2 and 4 and the measured values of γ and
Δωdip, we calculate the tunneling rates at the maxima of dissipa-
tion peaks 1–6, obtaining Γ∕2π ¼ 70, 90, 160, 180, 230, and
330 kHz. As expected, Γ increases with increasing VB as the
height of the potential barrier between the 2DEG and the QD
is reduced.

After extracting the tunneling rates, we fit each dissipation
peak by using Eq. 2 and measure the spacing between peaks
as functions of temperature from 4.5 to 30 K and from 78 to
95 K. We focus on the relative shifts between peaks, because
these are less sensitive than the absolute peak positions to slight
offsets because of small changes in the tip–QD distance. The size
and direction of each peak shift is different (see Fig. 2A), in a
manner that is completely captured by our model: The two peaks
in the s shell shift apart, as do the four peaks in the p shell. The
measured relative peak shifts of repelling pairs are shown in Fig. 2
C–D and compared to the theoretical shifts from Eq. 2, where the
sole fit parameter is the y intercept corresponding to 2EC. In ad-
dition, we expect that multiple shells, not just the valence shell,
should play a role at high temperatures where kBT ≪ ΔE is not
satisfied. For the relative shift of peaks 1 and 2 (Fig. 2C) we plot a
numerical calculation accounting for the possible occupation of
the p shell, showing that the high temperature correction agrees
well with the data. Fig. 2D shows that the relative shifts between
peaks 3 and 6 and between 4 and 5 are well described by Eq. 2 up
to 30 K. Finally, we note that there is an overall shift of the s
and p shells toward each other that we believe is a consequence
of strong repulsion of the p shell by the d shell, predicted to be
sixfold degenerate.

Theagreementbetween thedataand theory shown inFig. 2C–D
is strong evidence that the peak shifts are because of level
degeneracy in the QD. We performed several additional checks
to support this conclusion. First, our explanation of the observed
peak shifts requires only approximate level degeneracies, and
the predicted shifts are unchanged provided that the degeneracy
splitting is smaller in energy than kBT. This is important because

Fig. 2. Temperature-dependent shifts of Cou-
lomb blockade peaks. (A) The dissipation γ
(Red) and frequency shift Δωdip (Blue) mea-
sured simultaneously versus bias voltage, VB,
over the center of the upper set of concentric
rings in Fig. 1E. Note that the parabolic back-
ground from the capacitive force has been sub-
tracted from Δω to show Δωdip (see Materials
and Methods). The lever arm, α, is determined
by fitting each peak to Eq. 2 (Black). (B) The
first two peaks from the right in γ fitted to
Eq. 2 at different temperatures (offset for
clarity). (C) The measured and theoretical se-
paration between peaks 1 and 2 as a function
of temperature where the sole fit parameter is
the peak separation at zero temperature,
2EC1 ¼ 31 meV. A numerical calculation of this
separation including the effects of the empty p
shell is also shown (Blue). (D) The separation
between peaks 3 and 6 and peaks 4 and 5.
Because of thermal broadening of the peaks,
the positions of these peaks could be deter-
mined only up to 30 K. The directions and
magnitudes of the peak shifts as a function
of temperature are indicated with arrows in
A with larger arrows indicating greater shifts.

*We checked that taking distinct rates for each degenerate state leads to no qualitative
change in the results (see SI Text).

†The correspondence between dissipation peak positions and maximal tunneling is only
approximate because of an extra dependence on ϕ (see SI Text).
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we expect level degeneracies to be lifted in the real, imperfect
QDs that we measure. We note that, according to our theory,
the observation of peak shifts down to 4.5 K implies that the level
splitting is smaller than this temperature corresponding to roughly
0.4 meV. Furthermore, the same degeneracy theory leads to
small, but measurable, shifts between the dissipation peak and
the frequency peak corresponding to the same charge degeneracy
point. This is visible for the third peak (from the right) in Fig. 2A
in which the γ and Δω peaks do not exactly line up, with the
measured shifts compared to theory in Fig. S1 (see SI Text). These
dissipation-frequency shifts further support our model, ruling
out the alternative of a temperature-dependent renormalization
of EC or ΔE.

Finally, before we discuss results for coupled QDs, it is worth
noting that our theoretical treatment of degeneracies also pre-
dicts that the Coulomb blockade cantilever dissipation peaks
should have a slightly asymmetric line shape; cf. Eq. 2. This effect
was unfortunately too small to be resolved in the current experi-
ment, which focuses on cantilever–dot couplings that are weak
enough that the motion of the cantilever only weakly perturbs
the dot. We recently studied both theoretically and experimen-
tally the more complex regime where this coupling strength
becomes strong, because of a much larger cantilever oscillation
amplitude. We find that in this strong coupling regime, degener-
acy-induced line shape asymmetries become much more pro-
nounced and clearly resolvable (29).

Significant efforts are ongoing towards understanding and con-
trolling the properties of coupled QDs, in particular double QDs
or “artificial molecules” (30). The γ images that we obtain for
double QDs are equivalent to stability diagrams that depict
the charge state of the double QD system. This is because of
the position dependence of the lever arm αðx;y;zÞ for each QD
that results in two electrochemical potentials, μQD1 and μQD2.
Scanning the AFM tip at constant height and VB corresponds
to sweeping the μQD1–μQD2 space through changing α1 and α2
even though only a single electrode (the tip) is being used. In
a conventional stability diagram, lines of constant electrochemi-
cal potential for each QD are plotted as a function of two gate
voltages. When the two QDs are coupled, intersection points are
split into two points (triple points), showing avoided crossings
(30). In the γ images the avoided crossings are observed when
the ring radii suddenly change at intersection points. Fig. 4 A
and B show the same three QDs as in the lower part of Fig. 1E,

now imaged at −9 and −7.6 V, respectively. Such avoided cross-
ings are highlighted in the circle and box in Fig. 4A, representing
an example of weak and strong coupling, respectively.

We characterize the coupling strength by comparing the ratio
of the change in ring radius to the separation between the first
two rings (2EC) for QD2 (30). This method is valid only when
both rings are far enough from the QD center that the voltage
drop between them is approximately linear. By following this
procedure, the coupling of QD2 to QD1 (circle) and QD3
(box) can be compared. Whereas the change in radius of QD2
is approximately 0.10� 0.01 of 2EC because of QD1, it is 0.46�
0.03 because of QD3, indicating a much stronger coupling be-
tween QD2 and QD3. We consider the former to be an example
of weak coupling because the triple points are nearly joined. This
is consistent with a small capacitive coupling between the two
dots: The charging of one dot effectively gates the second dot,
causing a sudden change in ring radius.

Conversely, the boxed region in Fig. 4A is an example of strong
coupling because there is a large gap at ring intersections as in
the triple points of a stability diagram. In Fig. 4B, the same three
QDs as in Fig. 4A are imaged at smaller VB. This image allows
for a more intuitive explanation of the coupling. Consider the
diagonal line from the center of QD3 outward; initially, the
AFM tip is over QD3 in the ðNQD2;NQD3Þ ¼ ð0;1Þ state but takes
a path into QD2 in the ð1;0Þ state. The ability to go continuously
between these states without going through ð0;0Þ or ð1;1Þ neces-
sarily indicates a large capacitive coupling between the dots. It
also indicates evidence for an interesting charge transfer process
because no dissipation is observed between circles. Lack of
dissipation implies no change in the total dot charge; either there
is a cotunneling process where two electrons simultaneously
tunnel to and from the 2DEG, or there is coherent tunneling
between the dots.

Fig. 4 C–E shows another example of coupled QDs at 4.5 K.
The InAs structure (Fig. 4C) contains coupled QDs as shown in
the γ image (Fig. 4D). Fig. 4E zooms up on the region in Fig. 4D
showing many avoided crossings. Within this distance range from
the QD centers, each α is approximately linearly dependent on
the tip position so that scanning the tip more closely resembles
sweeping two gate voltages, resulting in the image resembling a
conventional stability diagram. Fig. 4 also highlights how advan-
tageous it is to have images in addition to the γ-VB spectra be-

A

B

Fig. 3. The asymmetry between adding and removing electrons because of
degeneracy on the QD. Solid horizontal lines depict electronic states on the
QD, and the Fermi distribution of electrons in the 2DEG is shown in gray. Solid
circles represent electrons already on the QD, whereas an empty dashed circle
is a newly added electron. The fine dashed line is where the chemical poten-
tials line up and where a dissipation peak occurs for a nondegenerate level.
The levels must be shifted as shown to recover equal addition and removal
rates. (A) Addition and removal processes in the s shell of degeneracy ν ¼ 2.
For the first peak the QD is initially empty (nshell ¼ 0), so there are two
possible states to tunnel into, but only one way to remove an electron once
it has tunneled in. For the second peak the shell is already occupied by one
electron (nshell ¼ 1), so there is only one way to tunnel in but either electron
may be removed. (B) Addition and removal processes in the p shell of degen-
eracy ν ¼ 4. Peaks 3–6 correspond to initial p shell filling of nshell ¼ 0–3.

Fig. 4. Imaging coupled QDs. (A) Dissipation image showing the same three
QDs as the lower half of Fig. 1E taken at a larger bias voltage, VB ¼ −9 V.
(B) Dissipation image of the same region asA taken at VB ¼ −7.6 V. The three
QDs are numbered in A but are easier to identify in B because each QD con-
tains one electron. In A an example of weak coupling between QD1 and QD2
is circled, and an example of strong coupling between QD2 and QD3 is boxed.
The possible mechanisms are discussed in the text. (C) Topography of two
connected islands. (D) Dissipation image taken at VB ¼ −8.0 V of the struc-
ture in C. Each structure in C appears to have an associated QD. (E) Dissipation
image of region in D with many anticrossings. (Scale bar: 20 nm.)
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cause the spectra alone will contain the peaks from nearby QDs
that can be identified by using the images.

Yet another advantage of this technique is the ability to
spatially resolve the effects of changes in the local electrostatic
environment; for self-assembled QDs, no other technique is cap-
able of doing this. The AFM images show how the QD confine-
ment potential is being influenced by charge reconfiguration.
Fig. 5 shows two such cases. The structure in Fig. 5A shows a fluc-
tuation in electron population because of nearby fluctuations in
the electrostatic background at both 78 (Fig. 5B) and 4.5 K
(Fig. 5C). The missing sections of the first ring in Fig. 5B indicate
that the number of electrons in the QD is fluctuating by one in
this region. Interestingly, depending on the scan direction (left to
right or right to left) over the QD, the missing section may ap-
pear. A similar reconfiguration was observed in the γ-VB spectra.
Whereas all the peaks appear in the reverse VB sweep (positive to
negative), the first peak disappears in the forward sweep. Fig. 5
D–G shows a more dramatic change. During the scan, a sudden
switch in the confinement potential occurs, leading to the transi-
tion from the single QD (Fig. 5D) to a coupled double QD
(Fig. 5E). This double QD state could be switched back to the
single state (Fig. 5G) by scanning over the same area with a po-
sitive VB (Fig. 5F). Although both of these changes are readily
identified in the images, having a spectrum alone may cause con-
fusion as is the case in conventional transport measurements.
These observations indicate that the QD confinement potentials
are very sensitive to the electrostatic background and can be mod-
ified, or switched, controllably.

Charge sensing with AFM can be used to investigate the elec-
tronic structure of single and coupled self-assembled QDs. The
technique enables the quantitative extraction of the tunneling
rate, charging energy, and the QD interaction energies; further,
we have used it to perform a unique measurement of tempera-
ture-dependent Coulomb blockade peak shifts confirming the
shell degeneracy of the QD. The dissipation images proved
especially useful in analyzing multiple QDs and changes in
QD confinement potential resulting from nearby charge fluctua-

tions. The images also revealed that what looked like a single QD
structure topographically can actually contain multiple QDs,
which might be a result of the local modulation of the confine-
ment potential caused by oxidation or structural defects. Addi-
tionally, the imaging capability of AFM provides insight into
the link between QD electronic structure and topography, which
is of great importance in developing electronic devices on the
basis of QDs.

Materials and Methods
Sample. The sample, grown by chemical beam epitaxy (31), consists of
the following layers: 460 nm undoped InP grown on top of an insulating
InP substrate, followed by a 10 nm Si-doped InP layer, 10 nm undoped layer,
10 nm In0.53Ga0.47As layer, 20 nm undoped layer, and a 1.82ML InAs layer that
results in the formation of InAs QDs by Stranski–Krastanow growth. The QDs
cover the surface with a density of ∼2.5 QDs per μm2 having diameters in the
range of 30–95 nm and heights of 0.5–6 nm. The 2DEG layer formed in the
InGaAs well serves as a back electrode, and an Ohmic contact to the 2DEG is
made by indium diffusion.

Experiment and Data Processing. Our home-built cryogenic AFM (32) includes
an rf-modulated fiber optic interferometer (33) with 1,550-nm wavelength
for cantilever position detection. We coat Si AFM cantilevers (Nanosensors
PPP-NCLR) with 10 nm titanium (adhesion layer) and 20 nm platinum. The
cantilevers typically have a spring constant of k ≈ 48 N∕m, with a 160 kHz
resonance frequency and a quality factor, Q, between 100,000 and
200,000 at 4.5 K. All of the images were taken in frequency modulationmode
(20). In this mode, the cantilever is self-oscillated at its resonance frequency
with a constant amplitude. The frequency shift and dissipation were mea-
sured with a commercially available phase-locked loop frequency detector
(Nanosurf, easyPLL plus). The topography images were taken in constant
frequency shift mode where a constant frequency shift is maintained by reg-
ulating the cantilever tip–sample distance by using a feedback controller. The
frequency shift and dissipation images were taken in constant-height mode
with a typical tip height of 20 nm. Dissipation images are shown in Fig. S2 as a
function of VB. More negative VB results in adding more electrons to the QD.
Areas of increased dissipation mark 2DEG–QD tunneling events. Each time a
ring is crossed when traveling toward the quantum dot center marks the
addition of an electron to the dot. More details of the AFM images are listed
in Table S1. The amplitude of the cantilever excitation signal, Aexc, is provided
as the dissipation signal from the Nanosurf oscillator controller. It is con-
verted to units of 1∕s via ω0

Q ðAexc
Aexc0

− 1Þ. Aexc0 is the excitation amplitude inde-
pendent of the tunneling process, in other words, the background
dissipation. This conversion is independent of cantilever oscillation ampli-
tude. Similarly, the signal is converted to units of eV∕cycle by multiplying
Aexc
Aexc0

− 1 by the factor E0 ¼ πk0a2

eQ , where a is the cantilever oscillation amplitude
(34). The Δω − VB spectra shown in Fig. 2A was originally superposed onto a
large parabolic background arising from the capacitive force between the
2DEG and cantilever tip. Over several volts, at typical cantilever–sample gaps
of 20 nm, the curve can be fit with a single parabola. In Fig. 2A this parabola
was subtracted from the frequency shift data.

The exact positions of the peaks (dips) in the dissipation (frequency shift)
are sensitive to the distance between cantilever tip and QD. In particular,
slight changes in cantilever tip lateral position with respect to the QD center
can lead to slight shifts in the peaks as can be deduced from the images
where the rings can have different spacing depending on location. The shift
in peaks as a function of height, however, is linearly dependent over the dis-
tances used in this experiment (12–22 nm). We took the differences in peak
positions in the data displayed in Fig. 2B to be caused by small height differ-
ences (sub-1 nm), and so the voltage axis was rescaled to align the data peaks
with the theoretical peaks but the peak heights were not rescaled. The mean
factor involved in the voltage rescaling is 1.011 with the most extreme factor
being 1.088. The temperature data above 22 K had thermally limited peaks
for a cantilever oscillation amplitude of 0.4 nm but needed to be reduced to
0.2 nm at 4.5 K. The error bars in Fig. 2 C and D represent how well the mea-
surement over a single location was reproduced.
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Figure Details. The tip height for the voltage spectra and all of the
constant height images was 19� 1 nm, with the exception of Fig. 5
D–G and Fig. S2, where the height was∼23 nm. Additional image
details are listed in Table S1. The acquisition time of the majority
of spectra was 15 seconds.

Details of Dissipation with Degenerate Shells. Here we outline the
approach used to derive the general expression for the dissipation
(Eq. 2). The charging Hamiltonian for small cantilever tip motion
may be written

HC ¼ ∑
N

ECN
ðN −NV Þ2jNihNj≃HC;0 −∑

N

ANNzjNihNj;

[S1]

where jNi is a state with N electrons on the quantum dot (QD),
NV ¼ CΣð1−αÞVB

e is the dimensionless gate voltage, CΣ is the total
capacitance of the QD, HC;0 is the oscillator-independent part of
the charging Hamiltonian, and the coupling strength for given N
is AN ¼ 2ECN

∂NV∕∂z. We emphasize that EC and A may be dif-
ferent for each electron added, as indicated by the index N. From
the second equality in Eq. S1, N plays the role of a force on the
cantilever. As a result, the dissipation and frequency shift may be
found from the linear response coefficient λNðωÞ describing the
response of N to changes in z (1).

Consider the charge degeneracy point between N and N þ 1
electrons on the QD, with other charge states prohibited by Cou-
lomb blockade. This may always be viewed as nshell or nshell þ 1
electrons occupying the valence shell of degeneracy ν (even for
a nondegenerate single level, for which nshell ¼ 0 and ν ¼ 1).
Neglecting interactions, the charge state with nshell (nshell þ 1)
electrons in the shell is Dn-fold (Dnþ1-fold) degenerate, with

Dn ¼ ν
nshell

� �
; Dnþ1 ¼ ν

nshell þ 1

� �
; [S2]

where ð··Þ denotes a binomial coefficient. These arise simply from
the different ways to put nshell or nshell þ 1 electrons into ν single
particle states. Let Pnshell ;i be the probability to find nshell electrons
occupying the shell in configuration i, and Pnshellþ1;j be the prob-
ability to find nshell þ 1 electrons occupying the shell in configura-
tion j. In general, these probabilities will satisfy the master
equations (2)

∂tPnshell ;i ¼ ∑
j

fΓj→iPnshellþ1;j − Γi→jPnshell;ig; [S3]

∂tPnshellþ1;j ¼ ∑
i

fΓi→jPnshell ;i − Γj→iPnshellþ1;jg; [S4]

where Γi→j is the rate to add an electron to configuration i
producing configuration j, and vice versa for Γj→i (note that these
rates are nonzero only for configurations i and j that differ by the
addition or removal of one electron). We calculate the rates by
using Fermi’s golden rule.

The master equations (Eqs. S3 and S4) may be solved in gen-
eral for given values of ν and nshell, but the solutions are cumber-
some for highly degenerate shells. To simplify the equations we
assume that for a given charge degeneracy point (i.e., a single
dissipation peak), the tunneling matrix elements from Fermi’s
golden rule are equal for all single particle states within the

degenerate shell. This is an approximation, because degenerate
states may indeed have different wave functions leading to differ-
ent tunneling rates. However, we expect the rates to be similar
because the tunnel barrier between the QD and the two-dimen-
sional electron gas extends over the entire QD area, minimizing
the effects of the spatial variations of different wave functions.
Moreover, we checked that significantly unequal rates lead only
to very small corrections in the peak shifts. For example, taking
distinct rates for the two degenerate orbital states in the p shell,
we find that rates differing by a factor of 2 lead to a correction of
1.5% for the shift of the 3rd dissipation peak (i.e., the 1st peak
in the p shell). We thus neglect these possible differences here.
Taking the rates to be equal we arrive at the simplified master
equation for the total probability to find nshell electrons in the
shell,

∂tPnshell ¼ Γ−ð1 − PnshellÞ − ΓþPnshell ; [S5]

where

Γþ ¼ ðν − nshellÞΓf ðEÞ; Γ− ¼ ðnshell þ 1ÞΓ½1 − f ðEÞ� [S6]

are the rates to add (þ) or remove (−) an electron and f is
the Fermi function. Note that the master equation for Pnshellþ1

is not independent, because Pnshell þ Pnshellþ1 ¼ 1. The stationary
solution of Eq. S5 is

Pnshell ¼
ðnshell þ 1Þ

ϕ
ð1 − f Þ; [S7]

Pnshellþ1 ¼
ðν − nshellÞ

ϕ
f ; [S8]

where ϕ is defined in Eq. 3 of the main text.
The quantity we need is the linear response coefficient λNðωÞ.

To find this, we assume that the cantilever is oscillating at fre-
quency ω. This causes the chemical potential difference between
the QD and the two-dimensional electron gas to oscillate:

E → Eþ δe−iωt; [S9]

and this leads to a change in the probabilities:

Pnshellþ1 → Pnshellþ1 þ λNðωÞδe−iωt; [S10]

Pnshell → Pnshell − λNðωÞδe−iωt: [S11]

Inserting Eqs. S7–S11 into Eq. S5 and linearizing in δ, we
solve for λNðωÞ. Its real and imaginary part yield the dissipative
and conservative parts of the electrostatic force from
ðk0∕ω2

0Þγ ¼ −A2ℑfλNðωÞg∕ω and ð2k0∕ω0ÞΔω ¼ A2ℜfλNðωÞg.
The dissipation for arbitrary degeneracy is given in Eq. 2, and
for the frequency shift we obtain

Δω ¼ −
ω0

2k0

A2Γ2

kBT

�ðnshell þ 1Þðν − nshellÞ
ω2 þ ðϕΓÞ2

�
f ð1 − f Þ: [S12]

Note that we recover the single-level result [i.e., Eq. 1 for the
dissipation] by taking ν ¼ 1 and nshell ¼ 0 as expected. Finally,
we point out that the temperature-dependent level repulsion dis-
cussed in the paper is contained in a symmetry of Eq. 2 and
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Eq. S12, from which we find that taking nshell → ν − nshell − 1 is
equivalent to E → −E.

The peak shifts of γ and Δω are proportional to temperature
and we can solve for the coefficients analytically. However, in
general the coefficients are complicated and unenlightening.
To show how the peak shifts depend on degeneracy, we provide
the coefficients in the low- and high-frequency limits where they
are greatly simplified. Note that our experiment is in the inter-
mediate regime ω ∼ Γ, so the peak shifts measured and calculated
in the main text lie between these two limits. For γ, the peak shifts
in the low and high frequency limits are

ΔEγ;peak

kBT
→

8<
:

ln
�
dþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dðdþ 1Þ þ 1
p �

as ðω → 0Þ;
ln

ffiffiffiffiffiffiffiffiffiffiffi
dþ 1

p
as ðω → ∞Þ;

[S13]

where

d ¼ ν − nshell
nshell þ 1

− 1. [S14]

For a nondegenerate level, d ¼ 0 and there is no peak shift at any
frequency. For Δω, the peak shifts in the same two limits are

ΔEΔω;peak

kBT
→

�
lnðdþ 1Þ as ðω → 0Þ;
0 as ðω → ∞Þ: [S15]

Comparing these limits, we see that the shell degeneracy results
in a greater peak shift in γ than in Δω. This is a direct conse-
quence of Eq. 4, from which we see that, aside from an en-
ergy-independent prefactor, Δω differs from γ by a factor of ϕ.

We measured the separation between the peak in γ and the
peak in Δω for each charge degeneracy point. This is shown in
Fig. S1 for the third peak in Fig. 2A as a function of temperature
and compared to theory with no fit parameters. As argued in the
main text, this provides strong evidence that the observed peak
shifts are indeed a result of shell degeneracy.

Conductance Through a Quantum Dot with Degenerate Shells. It is
straightforward to compare our result for the dissipation to
the conductance through a QD with degenerate energy levels.
The result is essentially contained in ref. 2, but here we provide
the extension to arbitrary degeneracy for direct comparison with
our Eq. 3. In a conductance measurement, the QD is placed be-
tween two electrodes with an applied drain-source bias voltage
V ds, and electrons may tunnel on and off the QD via both elec-
trodes. As above, we consider the degeneracy point with nshell or

nshell þ 1 electrons in the valence shell, and assume that the tun-
neling rates to different states within a degenerate shell are
equal (for each electrode). For direct comparison with our setup,
we further assume that the tunneling rates to the left and right
electrodes are equal. In this case, the analog of Eq. S5 for the
conductance is

∂tPnshell ¼ ðΓL− þ ΓR−Þð1 − PnshellÞ − ðΓLþ þ ΓRþÞPnshell ; [S16]

where ΓLðRÞþ ¼ ðν − nshellÞΓf LðRÞ is the rate to add an electron to
the QD from the left (right) lead, and ΓLðRÞ− ¼ ðnshell þ 1ÞΓð1 −
f LðRÞÞ is the rate to remove an electron from the QD via the
left (right) lead. The Fermi functions in the left and right elec-
trodes are evaluated at the chemical potentials
μL ¼ μ0 − eV ds∕2 and μR ¼ μ0 þ eV ds∕2, where μ0 is the chemical
potential at V ds ¼ 0. We solve Eq. S16 for the stationary solution
of Pnshell , and calculate the steady state current by considering the
electrons tunneling between the QD and, say, the left electrode.
Taking the derivative with respect to V ds and taking the V ds → 0
limit yields the zero bias conductance,

G ¼ e2

h
Γ

2kBT
ðν − nshellÞðnshell þ 1Þ f ð1 − f Þ

ϕ
; [S17]

where the argument of the Fermi function is the chemical poten-
tial mismatch at zero bias, E ¼ μQD − μ0. We see that the conduc-
tance is very similar in form to the dissipation in Eq. 3 but,
because there is no cantilever in the conductance setup, it is miss-
ing the factor 1∕½ω2 þ ðϕΓÞ2� (in addition to overall E-indepen-
dent factors). This factor in the dissipation (and the frequency
shift) reflects the interplay of the cantilever and tunneling time
scales and depends on E through ϕ. Whereas the effects on the
line shape and broadening are small (just as the asymmetric line
shape because of degeneracy was too small to be resolved in the
dissipation), the effect on the peak shifts is significant. The peak
shift in the conductance as a function of d [cf. Eq. S14] is

ΔEG;peak

kBT
¼ ln

ffiffiffiffiffiffiffiffiffiffiffi
dþ 1

p
: [S18]

This is equal to the peak shift in the dissipation in the high fre-
quency limit, but at low frequencies the peak shift in the dissipa-
tion is considerably larger. For the frequencies and parameters of
our experiment, the peak shifts in the dissipation are roughly a
factor of 2 larger than those expected for the conductance.
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Fig. S1. Difference between dissipation and frequency shift peak positions as a function of temperature for peak 3, compared to theoretical prediction with
no fit parameters.

Fig. S2. A series of constant height dissipation images, for the QD shown in Fig. 5 D–G, for increasingly negative VB. The base of the InAs structure is outlined
with rectangular dashes and the highest area is outlined with rounded, more closely spaced, dashes. This QD is localized near a high point in the structure,
which is often observed. For increasingly negative VB more rings emerge as the QD is populatedwith electrons. In these images the ring line shape is broadened
by the large cantilever oscillation amplitude of 0.8 nm at 4.5 K with a tip–sample gap of roughly 23 nm. Note that the lateral position of the final image is
slightly offset from the others because this image was taken at a later time in the experiment. Notice streaks appear in the same ring location indicating some
nearby electrostatic influence. The same color bar was used for each image, with all images but the last having a range of 0–0.85 Hz and the last 0–2 Hz. (Scale
bar: 20 nm.)

Table S1. Experimental details of AFM images

Fig. T (K) Δω∕2π (Hz) Oscillation amplitude (nm) VB (V) Acquisition time (min.)

1C 78 −9.4 1.6 −0.35 6
1D 4.5 - 0.4 −8.0 119
1E 4.5 - 0.4 −8.0 119
4A 4.5 - 0.4 −9.0 17
4B 4.5 - 0.4 −7.6 17
4C 78 −9.4 1.6 −0.35 14
4 D–E 4.5 - 0.4 −8.0 51
5A 78 −9.4 1.6 −0.35 9
5B 78 - 1.6 −8.0 68
5C 4.5 - 0.4 −8.0 51
5D 4.5 - 0.8 −8.0 9
5E 4.5 - 0.8 −9.0 9
5F 4.5 - 0.8 +6.8 9
5G 4.5 - 0.8 −8.0 9
S2 4.5 - 0.8 - 17 (last image 9)
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