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Having reached the quantum and thermodynamic limits of detection, atomic force microscopy (AFM)
experiments are routinely being performed at the fundamental limit of signal to noise. A critical understanding
of the statistical properties of noise leads to more accurate interpretation of data, optimization of experimental
protocols, advancements in instrumentation, and new measurement techniques. Furthermore, accurate simulation
of cantilever dynamics requires knowledge of stochastic behavior of the system, as stochastic noise may exceed
the deterministic signals of interest, and even dominate the outcome of an experiment. In this article, the
power spectral density (PSD), used to quantify stationary stochastic processes, is introduced in the context of
a thorough noise analysis of the light source used to detect cantilever deflections. The statistical properties
of PSDs are then outlined for various stationary, nonstationary, and deterministic noise sources in the context of
AFM experiments. Following these developments, a method for integrating PSDs to provide an accurate standard
deviation of linear measurements is described. Lastly, a method for simulating stochastic Gaussian noise from
any arbitrary power spectral density is presented. The result demonstrates that mechanical vibrations of the AFM
can cause a logarithmic velocity dependence of friction and induce multiple slip events in the atomic stick-slip

process, as well as predicts an artifactual temperature dependence of friction measured by AFM.
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I. INTRODUCTION

In the original implementation of the atomic force micro-
scope in 1986 [1], nanoscale forces acting on a sharp tip were
inferred by sensing the “static” deflection of the cantilever to
which the tip was tethered. Soon after, “dynamic” methods
[2,3] were implemented where the cantilever was oscillated
near or at its resonance frequency; this circumvented many
of the detection noise issues that occur at low frequencies
in the static case by moving the relevant noise bandwidth
into the kilohertz range. Today, both of these atomic force
microscopy (AFM) methods serve the nanoscience community
and have led experiments up to the boundaries imposed by
thermodynamic and quantum limits [4] of physics.

At room temperature, stochastic thermal noise dominates
the low signal-to-noise regime of nanoscale experiments. If
thermal noise is well understood, it can even be exploited
to extract information about the tip-sample interaction [5,6].
Importantly, the signal of interest in the AFM experiment itself
might be stochastic in nature, and understanding its statistical
properties can lead to new measurement techniques [7,8]. In
fact, measuring the variance—rather than the mean—of a
physical parameter can yield higher signal-to-noise ratio in
nanoscale experiments where fluctuations dominate the signal
of interest [9].

Inevitably, instrumental sources of noise are also present in
AFM. It is therefore imperative to have a good understanding
of all the sources of stochastic noise in order to properly
interpret the results of AFM experiments in the presence of
both signal and noise. Furthermore, understanding the sources
of noise naturally leads to improvement of future instrumen-
tal design, and serves in the optimization of experimental
protocols.

Given the growing complexity of AFM techniques, nu-
merical simulations of AFM experiments help to understand
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the effects that instrumental parameters [10,11] and complex
cantilever dynamics [12] have on the acquired signals. So far,
virtual AFM simulators, such as VEDA [13], are optimized for
deterministic calculations of cantilever dynamics. The next
natural step is the inclusion of stochastic cantilever dynamics,
as well as stochastic vibrations inherent to the instrument and
colored detection noise, in order to more accurately reproduce
true AFM experiments.

Therefore the goal of the statistical noise analysis presented
in this paper is to provide a framework for the critical
understanding of variability in data acquired by AFM, to
provide AFM design guidelines for the minimization of noise
in different types of experiments, to help optimize available
parameters when constructing experimental protocols, and to
establish statistical foundations for the simulation of stochastic
noise in AFM.

The next section provides an overview of stochastic noise
sources in AFM. Afterwards, a case study friction experiment
is presented that will be referred to throughout the discussion
of the four core sections. The first section describes the
detection noise sources in AFM and how they scale with key
experimental parameters. The second outlines the statistical
properties of different types of noise sources in relation to
their power spectral densities (PSDs). This leads to a method
for integrating the PSDs to obtain quantitatively accurate
estimates of the variance of linear measurements, presented
in the third section. For nonlinear measurements, the fourth
core section demonstrates the utility of a method for stochastic
simulation of noise in AFM.

II. OVERVIEW OF STOCHASTIC NOISE IN AFM

In a recent article [14], the noise sources of AFM were
divided into three categories: detection noise, force noise, and
displacement noise.
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Optical shot noise sets the fundamental limit of detection of
the optical beam deflection method [15], and its reduction has
played a primary role in enabling atomic resolution imaging
with dynamic AFM in liquids [16], for example. Detection
noise can have a measurable impact on the tip-sample physics
and the outcome of an experiment by inducing unwanted
vibrations when using feedback to track the tip-sample
separation. Conversely to dynamic AFM, the detection noise in
static AFM is far from white and can have an elaborate spectral
distribution and be characterized by the enigmatic 1/ f noise
[17,18], power-line noise, various mechanical resonances, etc.
Noise analysis in this situation becomes nontrivial because
of the complicated spectral distribution of densities, which
are poorly described by parametric physical models and must
generally be estimated nonparametrically.

Force noise is mainly caused by thermal fluctuations which
set a fundamental lower bound to the force fluctuations that the
tip imparts on a sample during a measurement. Force noise can
have a sizable impact on the outcome of an AFM experiment;
for example, thermal fluctuations of the cantilever directly
affect the maximal force observed in stick-slip measurements
[19]. Thermal noise has a theoretical lower limit set by
thermoelastic damping in vacuum environments [20-22]. In
ambient conditions, it correlates with viscous damping [23-25]
and can completely dominate detection noise in highly viscous
environments [26]. Recently, the low-frequency fluctuations
of cantilevers have been under scrutiny: structural damping
causes a 1/f power spectral density in the cantilever at
low frequencies where viscous forces are negligible [27];
1/f noise can also be induced by the coupling of light
power fluctuations to cantilever bending by thermally induced
stress [14].

On the other hand, the sources of displacement noise in
AFM are usually not of fundamental interest because they
relate to instrument design and AFM engineering [28]. Never-
theless, their existence should not be disregarded: vibrations
between the tip and the sample can have profound impact on
the results of an AFM experiment, even if they lie outside of the
measurement bandwidth. For example, deliberate tip-sample
vibrations can enable dynamic superlubricity [29,30] and
eliminate wear [31] in friction experiments. By the same
token, undesirable vibrations of the tip-sample junction can
affect the results of an AFM experiment well beyond simple
deterioration of image quality.

III. CASE STUDY

This section presents a static AFM experiment which will
serve as an example to guide the noise analysis of the following
sections. A friction measurement was chosen as the benchmark
because it represents a simple example of a linear measurement
in static AFM.

Friction force microscopy [32] in liquid environments
has recently reached atomic-scale resolution [33,34] with
clear measurements of stick-slip tip motion acquired during
the electrochemically activated transition between a copper
chloride monolayer and Au(111), as shown in the image of
Fig. 1. The lateral force curves in Fig. 1(a) demonstrate that
roughly 2 eV of energy is elastically stored and released for
every stick-slip cycle. However, roughly 50 meV is dissipated
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FIG. 1. (Color online) (a) A backward and forward lateral force
scan is performed on Au(111), with a scan rate of 25 lines/s which
corresponds to ~400 nm/s. The tip scans over the surface with stick-
slip motion. Average lateral forces are shown in dotted lines. The
area enclosed in the hysteresis loop is the energy lost due to friction.
(b) A lateral force map is shown (right) with the calculated friction
force per line (left) as a function of time; the copper chloride layer
is electrochemically desorbed at t = O s, resulting in a change in
observed lattice and a reduction in both friction average and standard
deviation. (The slight kink at # = 5 s is caused by the change in image
scan direction from downwards to upwards—two consecutive images
were merged for this figure.)

during every stick-slip cycle, as determined by measuring
the area enclosed by the hysteresis loop. The corresponding
average friction force per line is plotted in Fig. 1(b), and
demonstrates a clear reduction in friction on Au(111) vs the
copper monolayer [33]. In the following sections, attention is
focused on the variability in friction which gives rise to the
following questions:

(i) Does the variability originate due to detection noise, or
is it a true measurable variability in friction?

(i) What are the origins of detection noise, and can it be
reduced?
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(iii) Is the true friction variability enhanced by vibrations
of the instrument?

IV. NOISE IN OPTICAL BEAM DEFLECTION:
THE POWER SPECTRAL DENSITY

This section introduces the “power spectral density” (PSD)
in the context of analyzing noise of the optical beam deflection
(OBD) method [15]. The PSD, sometimes referred to as the
power spectrum, represents a frequency decomposition of the
power of a signal. It is particularly suitable for quantifying
stationary stochastic processes. The PSD will be central to the
remainder of the document, and will first be presented in this
section from an experimental point of view.

The OBD method is the most widely used detection method
in AFM. Our AFM [33,35] employs a 1-mW fiber-coupled su-
perluminescent diode (SLD). Like any light source, SLDs are
afflicted by both angular fluctuations and power fluctuations
of their emitted light beam. Understanding how both angular
fluctuations and power fluctuations affect AFM measurements
permits the optimization of experiments by the reduction of
detection limits, and enables accurate interpretation of noise
observed in AFM experiments.

In the most common application of the OBD method, the re-
flected light beam shines onto a split-diode photodetector. The
difference in power between both sides of the photodetector
is proportional to the angular deflection of the cantilever—to
first order. As long as the light beam is perfectly centered on
the photodetector, the detection of its position is practically
impervious to power fluctuations. The differential nature of
the measurement results in a high common-mode rejection
ratio: the difference signal remains at zero even if the total
optical power fluctuates.

Whereas this is a good approximation for dynamic AFM,
static AFM is often performed under varying loads that cause
a large nonzero difference signal during the experiment.
Consequently, the detection power spectral density n3(f)
can vary throughout a static AFM experiment because it is
a function of the time-averaged normalized difference signal
Ao. The noise is minimized when Ay = 0, and increases as
|Ao| > 0. The generalized form na(f|Ag) is measurable and
predictable, as is demonstrated in the following section. Note
that dynamic AFM can also be prone to the same problems if
the light beam is not perfectly centered on the photodetector.

A. Common-mode and differential-mode noise

Consider some irradiance profile 1(0’) of a light beam
shining on a split photodetector, where 6’ is the angular
coordinate in the far field. The integrated power incident
on each section of the photodetector, P4 and Ppg, is used to
generate the normalized difference signal

Pp(t) — Pa(2)

At) = 7o

(M
which provides a measure of cantilever deflection, and the
normalized sum signal

Pa(t) + Pp(2)

() = B

2)

PHYSICAL REVIEW E 86, 031104 (2012)

0.0002
0.0001
ol
—0.0001

normalized difference A

—0.0002

1.002
1.001 f '}
1

normalized sum X

|
0.999 | ‘}

0.998

L PRSI B LN U P U P P PR | P
0 0.2 0.4 0.6 0.8 1
time (s)

FIG. 2. (Color online) The normalized difference (A) and nor-
malized sum (X) of our SLD light beam centered on the photodetector.
Note that both vertical axes differ by a factor of 10 x in range. The
% fluctuations are roughly 10 x larger and strongly afflicted by line
noise (60 Hz and harmonics). Both signals are uncorrelated. The
details of the optical beam deflection system and electronics used for
this measurement are outlined elsewhere [33,35].

where P, is the total optical power time averaged across the
entire experiment.

Figure 2 shows data acquired during 1 s of both signals in the
situation where the light beam is centered on the photodetector:
Ay =0, where Ay, defined earlier, is the time-averaged
value of A(f). In this situation, any instantaneous fluctuation
31(9’) of the irradiance profile can always be mathematically
decomposed into two orthogonal components:

$1(0') = 8lom + SIpm. 3)

The common-mode irradiance fluctuation §Icy refers to
the symmetric component of §1 for which the deviations from
the time-averaged irradiance Iy(0’) cause changes in the sum
signal 6%, but no change in the difference signal §A = 0.
Likewise, the differential-mode irradiance fluctuation 8 Ipy is
antisymmetric, causes no net change in total optical power
(6X = 0), and results only in a deviation §A which appears
as a change in the measured angle. Figure 3 illustrates this
decomposition.

Certain noise sources may cause deviations of only §/Ipm
or §Icym or both. For example, shot noise causes the same
amount of power fluctuation in both § Ipy and § Icym because it
is spatially uncorrelated on all length scales. On the other hand,
angular movement in the light beam causes only 6 Ipy with no
associated changes in total power because the fluctuation is
perfectly spatially correlated (loss of light on one detector
implies gain of light on the other detector). In the special case
of Ay = 0 discussed so far, both of these fluctuations in the
irradiance profile can be considered orthogonal, and therefore
all fluctuations in §¥ and A are effectively temporally
uncorrelated—assuming that §X <« 1 and § A < 1 such that
cross-terms § X5 A & (. Note that both time series in Fig. 2
show no (temporal) correlation.
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FIG. 3. (Color online) At any point in time, the irradiance profile
of the light beam [ has a deviation §/ from its time-averaged profile
Iy. This irradiance is defined with respect to the angular coordinate in
the far field of the light beam. This deviation can be mathematically
decomposed into two components: §/cy and §/py. The common-
mode fluctuation §/cy is even about the center and causes changes
in the sum signal §X. The differential-mode fluctuation &Iy is odd
about the center and causes changes in the difference signal §A. Both
8% and §A are independent when the light beam is centered on the
photodetector. Note that these plots are not to scale and that usually
83X > SA.

The time dependence of these fluctuations is now in-
vestigated. When Ay =0, the common-mode noise and
differential-mode noise can be estimated by measuring X(¢)
and A(z), shown in Fig. 2, and calculating their respective
average power spectral densities (n%M) and (nzDM), as shown
in Fig. 4(a). The next subsection describes how to measure a
power spectral density.

These two measurements, (nZy,) and (nd,;), can be used
to determine the noise affecting A(#) throughout an AFM
experiment atany Ag. For Ag # 0, common-mode fluctuations
couple into the difference signal A and cause additional
variations 8 A. The total noise for any A can be calculated by

nA(f1A0) = npp(f) + Adnga(f). 4

This equation holds when the fraction of the light on
either photodetector ( PA{J:PB) and the total light (P4 + Pp)
are independent. While this equation is not expected to be
strictly true, it can be a good approximation in practice
where nfy; < ngy < 1 as verified in Fig. 4, which compares
the predictions of nzA(fle = 0.057) by Eq. 4 with the
corresponding empirical measurement.

Note that the electronic noise in the detection system is
negligible compared to the optical noise in Fig. 4, which
is necessary for Eq. (4) to hold. Appropriate circuit design
achieves this condition [33,36].

B. Measuring a power spectral density

A power spectral density is estimated by the squared
magnitude of the Fourier transform of a time series. In
practice, any measurement of a spectral density is subject to
bias, aliasing, spectral leakage, and drift; it must be carefully
performed to obtain an accurate estimation of the true spectral
density of noise. These problems are described in detail in the
Appendix.

Each measurement in Fig. 4(a) was performed by acquiring
a time series of the signal in question for 8 min at 200 kHz. A
70-kHz electronic antialiasing filter (eighth order) was used to
prevent aliasing, as can be observed by the roll-off in Fig. 4(a).
A linear fit to the data was subtracted to account for drift.
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FIG. 4. (Color online) (a) The common-mode ncy and
differential-mode npy noise densities were measured by shining the
light beam directly onto the photodetector, as described in Fig. 2.
Note that the square root of the power spectral density is plotted here.
Both noise densities were used to predict the detection noise density
na for a normalized normal signal Ay = 0.057, using Eq. (4). The
na was also measured after adjusting the photodetector position
to achieve Ay = 0.057 experimentally; the measured noise density
is overlaid and shows very good agreement with the calculated
prediction. A Ay = 0.057 corresponds to a deflection of 150 nm
and a force of 15 nN in our particular setup, and causes an increase
in detection noise of ~4x. The sharp noise peaks at 60 Hz and
harmonics are caused by line noise in the SLD current source. The
roll-off at 70 kHz was achieved by the use of an antialiasing filter.
(b) The detection noise density n, at 100 Hz is calculated from
Eq. (4). At Ay = 0, the noise in the difference signal n is composed
of differential-mode noise only. For |Ay| > 0.015, common-mode
noise dominates detection noise.

The entire time series was then multiplied by a Hann window
to reduce spectral leakage and estimation bias of the 1/f
noise. A Hann window was used as it offers a well-balanced
trade-off between frequency resolution and dynamic range for
our application. Then, the Fourier transform was performed
and its squared magnitude resulted in a single PSD, which is
renormalized by the power of the windowing function. Finally,
the powers of adjacent frequencies of this PSD were averaged
to reduce variance; this increases the signal-to-ratio at the
expense of frequency resolution.

C. Discussion

On our AFM, common-mode noise dominates the deflec-
tion signal for | Ag| > 0.015, which corresponds to deflections
of >30 nm and forces >3 nN with a 225-um-long cantilever
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having a 0.1 N/m spring constant. This stresses the importance
of centering the light beam on the photodetector before the
experiment, such that Ay = 0 corresponds to 0 nN. Typically,
experiments that are performed near O nN are most prone to
detection noise and can benefit from the high common-mode
rejection ratio at Ayg = 0. Centering the light beam in the
lateral direction is equally important for sensitive friction
experiments.

The common-mode noise is fundamentally limited by
source-induced noise, which exceeds shot noise by nearly ten
times for our particular SLD, as calculated theoretically by
Ref. [37]. In practice, the measured common-mode noise in
Fig. 4 is actually dominated by electronic noise in the current
driver which rolls off above 70 kHz, and has the characteristic
60-Hz harmonic noise peaks and the elusive 1/ f noise at low
frequencies. In either case, for drive-current or source-induced
noise, experiments performed at |Ag| > 0.015 do not benefit
from an increase in optical power because they are not limited
by optical shot noise.

Figure 4(b) demonstrates that differential-mode noise dom-
inates the detection noise for |Agp| < 0.015, and that shot
noise only takes effect for frequencies above a few hundred
hertz. Consequently, changing the optical power by either
boosting the drive current or coating the cantilever reduces
only shot noise, such that only fast experiments performed at
|Ag| < 0.015 benefit from an increase in optical power (an
exact quantification of “fast” is the topic of Sec. VI). At low
frequencies, the angular fluctuations of the light beam are
measurable above shot noise. These fluctuations are spatially
uncorrelated and intrinsic to the light beam as it exits the optical
fiber; therefore they are independent of the AFM design and
depend only on the specific light source.

These observations suggest that discussing the fundamental
theoretical limits of OBD noise in static AFM experiments
is not necessarily worthwhile, because they might be over-
shadowed by other noise sources in experimental settings.
The differential-mode noise may be limited by 1/f noise,
rather than shot noise, and the drive electronics may set the
common-mode noise limit far above the shot noise or even
source-induced noise. It is therefore advisable to empirically
measure the common-mode and differential-mode noise for
any particular setup and use the modeling summarized by
Eq. (4) to make well-informed predictions about detection
noise in AFM experiments.

So far, noise has been quantified by its power spectral
density. At this stage, it is unclear how all the components
of the PSD in Fig. 4 relate to the variability in the measured
friction seen in Fig. 1. White noise, 1/ f noise, and line noise
all have unique statistical properties and dominate at different
frequencies. The statistical interpretation of a PSD is the topic
of the following section.

V. STATISTICS OF THE POWER SPECTRAL DENSITY

This section outlines the statistical properties of different
noise sources in AFM, with the goal of performing meaningful
noise analysis of linear measurements (Sec. VI) and efficient
stochastic noise simulations (Sec. VII), using the power
spectral density (PSD).
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The statistical analysis in this section relates to stationary
noise, defined as a stochastic process with an underlying prob-
ability distribution that does not vary in time. The covariance
between any two outcomes of such a process depends only
on the relative time separating their measurement, and is
independent of absolute time. The mean must remain constant.

In contrast, nonstationary noise, such as vibrations caused
by sporadic slamming of a door or intermittent discussions
in the laboratory, does not constitute a fundamental detection
limit in AFM and will be disregarded. Also, 1/f noise is
nonstationary, but it can be approximated as stationary given
certain conditions that will be discussed later. Linear drift
is neither stochastic nor stationary on any time scale, and
therefore cannot be described by a PSD; it should always be
subtracted from the time signal before calculating a PSD (see
Appendix for details).

Most fundamental noise sources in AFM can be approxi-
mated as stationary with high accuracy, which will be assumed
henceforth.

A. Noise in the time domain

Let x; = [x1,X2,...,X,] be a m x 1 vector of random
variables, acquired on an equally spaced time-domain basis
t =[t1,t ... t,]. This is the form in which data are acquired
by an analog-to-digital converter (ADC) card used in most
modern data acquisition systems. The data vector x; is always
corrupted by stochastic noise, and can therefore be expressed
as the sum of deterministic (d;) and random (€,) components:

xt=dl+€t’ (5)

where the “t” subscript emphasizes that these vectors are
defined in the time domain. Note that vectors in bold represent
vectors of random variables which have some associated prob-
ability density function, while d, represents a nonprobabilistic
data vector. Further in this section, €, will be used to represent
a single measurement drawn from the probability distribution
of ¢;.

The distinction between d; and €, is a matter of perspective:
for example, stochastic thermal fluctuations of the cantilever
can be considered noise (€;) or signal (d;) in different
situations. If an experiment seeks to determine a hydration
layer structure by its effect on the thermal motion of the
cantilever [5], this thermal motion can be considered a
desirable experiment signal corrupted by some stochastic
detection noise. On the other hand, the measurement of forces
exerted by a single titin molecule tethered to the cantilever
tip [38] is clearly corrupted by undesirable stochastic thermal
noise of that cantilever.

Assuming the noise €, has zero mean, the measurement
of interest d; is equal to the expectation value of x;, which
has some unwanted variability characterized by a temporal
covariance matrix V;:

I p2 p3
2 1 p ...
V, = Var(x;) = E(e; - ej) =g . ,  (6)

P33 P2
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FIG. 5. (Color online) A thermally driven harmonic oscillator
with O = 10 is used as an example to illustrate the key differences
between performing noise analysis in the time and frequency
domains. (a) A single time series is shown, with a corresponding
temporal power matrix V;, many of which can be averaged (V) to
estimate the temporal covariance matrix V;. The latter has significant
off-diagonal elements due to correlations between data points in the
time domain. (b) A single power spectral density n? and the average
(n?) of 1000 is shown, with the corresponding spectral power matrix
Vf and its average (Vf) which is asymptotically diagonal because
the noise is stationary. For simplicity, only the real part of the first
quadrant of the matrices is shown. (V,) and (Vf) were averaged 1000
times.

where “1” represents the conjugate transpose, while Var and E
are the variance and expectation value operators. Note that V,
is a Toeplitz matrix (identical elements across each diagonal)
which is required for the time invariance property of stationary
noise.

The matrix V; is a theoretical quantity which can only be
estimated experimentally. A single outcome ¢, drawn from
the probability distribution of €, results in a temporal power

matrix definedas V, = ¢; - ej . The average (V;) asymptotically
converges to the temporal covariance matrix V,. This is
illustrated in Fig. 5(a) for a thermally driven harmonic
oscillator.

In the special case of white noise, statistics are straight-
forward: all the off-diagonal elements of V; are zero because
every data point in €, is uncorrelated. For nonwhite noise, the
time-domain random variables are correlated, with associated
off-diagonal covariance elements in V;, as seen in Fig. 5(a).
This makes the time domain a poor basis for performing noise
analysis.

For example, a single friction measurement in Fig. 1 is
a linear combination of the 1024 data points recorded in a
lateral force loop: average forward lateral force minus average
backward lateral force. In the case of white noise, the standard
deviation of friction is simply the standard deviation of lateral
force divided by +/1024. However, in the presence of pure
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1/£? noise, for example, this approach is wrong and would
underestimate the standard deviation of friction by nearly 8.
This error stems from the strong correlation of noise in the
time domain; in short, covariances cannot be neglected if the
noise is not white.

In the next section, variances will be decorrelated by
transferring the noise analysis into the frequency domain.

B. Noise in the frequency domain

The signal x; in the time domain can be mapped into the
frequency domain by the linear transformation known as the
discrete Fourier transform:

x; = Fui, @

where F is the complex-valued Fourier matrix. If the units of
x; are V, then the units of x ; are V/ /Hz. The decomposition
of the frequency-domain measurement x y into signal and noise
components remains valid due to linearity, and follows from
Eq. (5) as

Xf:Fd[+f€t:df+€f. (8)

Although it might be more difficult to interpret the
frequency-domain signal dy, the interpretation of stationary
noise € y becomes much simpler because the corresponding
spectral covariance matrix V is (asymptotically') diagonaliz-
able:

o2 0 0
Vs = Var(xy) = E(e - eTf) =lo . ol O
0 0 o2

In essence, the frequency domain represents the orthogonal
basis of stationary noise [39], which accurately represents
most noise sources in AFM. Because the random variables
composing x ¢ are uncorrelated, their variances can be added
without consideration of any off-diagonal terms. This makes
the frequency domain an attractive basis for noise variance
analysis. In analogy to the time domain, the spectral covariance
matrix V; is experimentally estimated by averaging the

spectral power matrix Vf =€5- E}. This is illustrated in

Fig. 5(b), where (Vf) is shown to converge to the diagonal V.

The power spectral density is the diagonal of the spectral
covariance matrix Vy, which provides a complete statistical
description of any stationary Gaussian noise. If the noise is sta-
tionary but non-Gaussian, further assumptions are necessary
for a full characterization. However, meaningful noise variance
analysis can still be performed on non-Gaussian stationary
noise using the power spectral density, as will be shown in the
next subsection.

IThe term “asymptotically diagonalizable” refers to the fact that
there is a true diagonal V defined in continuous time that can be
approximated in discrete time to arbitrary accuracy as m — oo. In
experimental AFM settings, where m is usually in the hundreds or
even millions, this approximation is often overshadowed by the finite
precision in estimating discrete time V.
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FIG. 6. (Color online) Four different stationary noise sources are analyzed. A single outcome is drawn, and histogrammed. Noise can have
a Gaussian (a),(b) or a non-Gaussian (c),(d) probability density function, as overlaid on the histogram. Although flicker noise is non-Gaussian,
it is stationary and therefore has a (V) which is asymptotically diagonalizable and a well-defined power spectral density. The rectified line
noise is non-Gaussian and is only stochastic because it has a random phase. All harmonics are locked in phase, but since the noise is stationary,

the analysis of variance using the power spectral density still holds.

Figures 6(a) and 6(b) shows examples of two stationary
Gaussian noises: white noise and a thermally driven damped
harmonic oscillator. The Gaussian property is illustrated
by the histograms, which show convergence to a normal
distribution in the time domain. Even though the harmonic
oscillator has highly correlated data in the time domain, both
spectral covariance matrices are diagonal, and therefore the
power spectral densities describe these Gaussian noise sources
completely.

Figure 6(c) depicts flicker noise [40], defined here as a
two-state process with a switching time that is exponentially
distributed. Although purely stochastic and stationary, this
bimodal process is far from Gaussian, yet the spectral
covariance matrix is diagonal because the process is stationary,
and therefore an accurate analysis of variance can be performed
in the frequency domain.

Figure 6(d) represents rectified line noise, modeled as the
absolute value of a sine wave. Although stationary, its only
stochastic component is the random phase. Such a noise source
is very spectrally pure, and defined only by the fundamental
frequency and harmonics. Despite the fact that the PSD has
only deterministic harmonic powers, the spectral covariance
matrix is still diagonal and the analysis of variance presented
in the following section holds. Note that spectral leakage has
been disregarded in the discussion so far because it can be
made arbitrarily small by appropriate averaging methods (see
Appendix).

C. Probability distribution of the power spectral density

This description begins with the special case of stationary
Gaussian noise, and is later extended to stationary non-
Gaussian noise. The limitations in statistically characterizing
1/ f noise, which is nonstationary, are also discussed. Finally,
the behavior of deterministic noise under stationary noise
analysis is investigated.

1. Stationary Gaussian noise

Each random variable composing the frequency-domain
noise vector €y is a linear combination of all the random
variables in the time-domain noise vector €,, as weighted by
the complex-valued Fourier matrix F. Since €; is normally
distributed for Gaussian noise, the real and imaginary random
variables of €y are also normally distributed, and any two
frequencies are asymptotically independent for m — oo.

The power spectral density is the squared magnitude of € 7,

n® = diag(e, - €}) (10)

(for notational simplicity, the squaring in n? implies squaring
the magnitude |n|?). Note that n? is a m x 1 vector of
random variables with an associated probability distribution.
According to Eq. (10), every component of n” is the sum
of squares of the identically distributed real and imaginary
parts of the corresponding component of € ;. From basic
probability theory, it is known that the sum of squares of
two independent and identically distributed normal random
variables is exponentially distributed. In other words, the
power spectral density n? of stationary noise is composed
of independent exponentially distributed random variables.

Experimentally, the expectation value E(n?) is estimated
by the average power spectral density (n?), taken over many
single observations n2. Because of the large variance of the
exponential distribution, it is important to perform many
averages when measuring power spectral densities [41]. Note
that the averaging should be performed in power (|n|?), rather
than in magnitude (|n|)?, otherwise the PSD is underestimated
by a factor of 4/ (see Appendix for details).

2. Stationary non-Gaussian noise

Stationary non-Gaussian noise sources may also comply
with the statistical properties described so far—under certain
conditions. Take flicker noise, as illustrated in Fig. 2(c); even
though the time-domain probability density function is far
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from Gaussian, the frequency-domain random variables are
asymptotically normally distributed by virtue of the central
limit theorem, and thus n? is composed of exponentially
distributed random variables. On the other hand, the rectified
sine wave in Fig. 6(d) has only one random component—its
phase—and therefore does not obey the criterion for the central
limit theorem to take effect. In fact, any two n? for this noise
are identical; in other words, n? is purely deterministic with
no associated probability distribution (disregarding spectral
leakage).

Although the power spectral density does not fully describe
the statistical properties of stationary non-Gaussian noise, it
is sufficient for the noise analysis of linear measurements
presented in the next section.

3. 1/f noise

Measuring 1/ f noise is a nontrivial task. For exponents
0 < ¢ < 1, noise with power spectra ~1/f¢ are stationary but
with long-range memory. For ¢ > 1, the noise is nonstationary,
having variance which changes with time [42]. In certain cases,
the 1/ f power spectrum of the noise can be approximated on
a limited bandwidth, as long as its PSD is measured across a
much wider bandwidth. For nonstationary noise, however, the
windowing function must be chosen according to ¢ in order to
obtain consistent estimates.

Meanwhile, any distributional assumption such as Gaus-
sianity of 1/f noise should always be verified. A common
deterministic signal leading to a 1/ f noise spectrum is linear
drift. Stochastic 1/ f noise and deterministic linear drift are
fundamentally different sources of noise. Using the PSD to
represent linear drift is inconvenient. Estimation details in the
presence of both stochastic 1/ f noise and deterministic drift
are discussed in the Appendix, where it is concluded that it is
best to subtract linear drift from any signal before calculating
its PSD to more accurately estimate the 1/f noise.

4. Deterministic periodic noise

In typical AFM experiments, the relative phase of the
deterministic periodic noise is random, such that its effect
on a measurement is not purely deterministic.

Take a square wave noise with constant amplitude and a
random phase; the power spectral density n* of this noise
source has fixed harmonics with predetermined magnitudes
(disregarding spectral leakage). Therefore, n® is a vector of
deterministic numbers, rather than random variables. The
following simulation describes the effect of such deterministic
noise on the probability distribution of linear measurements.
For illustrative purposes, a friction experiment was simulated
with three noise sources:

(1) Deterministic noise: a deterministic square wave with a
period equal to the scan rate. The only random component is
the relative phase of the square wave.

(2) Dephased noise: the noise from (1) was recycled but
each frequency component was given a random phase (drawn
from a uniform distribution).

(3) Stochastic Gaussian noise: noise was generated from
the PSD from (1), whereby each complex-valued frequency
amplitude was drawn from a complex normal distribution.
This method is described in detail in Sec. VII.
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deterministic noise 0=14.44+0.02pN
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FIG. 7. (Color online) A friction experiment was simulated for a
square wave noise, assuming (1) a single random phase (deterministic
noise), (2) dephasing all the frequency components but keeping fixed
magnitudes (dephased noise), and (3) drawing the complex-valued
amplitudes from a normal distribution (stochastic noise). Note that
all noise sources lead to an identical standard deviation in friction,
even though their probability distributions are completely different.
The square wave was given an amplitude of 50 pN, and its period
was equal to the scan rate. Note that such a source of noise would be
imperceptible in the lateral force channel in Fig. 1(a) due to its small
amplitude, but could cause significant error in estimating the friction
computed in Fig. 1(b).

The result is presented in Fig. 7. Because the simulation
was performed with zero friction, any observed friction
is an error caused by noise. Although each noise source
results in completely different distributions in the observed
friction error; their standard deviations are identical. This
demonstrates that the analysis of variance using PSDs is often
accurate for any type of stationary noise source (deterministic
or stochastic); however, it cannot predict the probability
distribution of a linear measurement unless the noise is purely
stochastic and stationary, which are the assumptions required
for the central limit theorem in Sec. V C 2 to hold.

D. Discussion

The frequency domain is best suited for noise analysis
because its covariance matrix is diagonal. In other words,
the frequency-domain data points are uncorrelated, while
time-domain data points are correlated if the noise is not white.
This significantly simplifies the analysis of variance presented
in the next section, where variances can be added without
consideration of covariances.

The diagonal of the covariance matrix, defined as the
power spectral density (PSD), contains all the statistical
information of stationary Gaussian noise, which describes
fundamental noise sources in AFM such as optical shot noise
and thermal noise. For stationary non-Gaussian noise, the
PSD still provides an accurate measure of variance, but lacks
information regarding the specific probability distribution of
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a measurement performed in the presence of such noise. This
statement applies to both stochastic noise, such as flicker noise,
and deterministic noise, such as line noise.

The assumptions in describing thermal noise and optical
shot noise as stationary are that the temperature is fixed,
and that the average optical power is fixed, respectively. It
is well known that there are fluctuations in both quantities,
which set a lower limit to accuracy in describing these noise
sources by their power spectral density. For example, 1/f
noise in optical power causes the shot noise level to fluctuate
during an experiment. More importantly, we are aware that
the PSD of detection noise may vary during an experiment if
the cantilever deflection changes (see Fig. 4). This can also
violate the assumption of stationarity.

For stationary stochastic noise, the data points of a PSD are
independent and exponentially distributed. The exponential
distribution of PSD data points follows from the fact that the
real and imaginary amplitude components at a given frequency
are (asymptotically) independent and identically distributed
Gaussian random variables.

VI. STANDARD DEVIATION OF
LINEAR MEASUREMENTS

This section outlines a method for integrating the power
spectral density that provides a quantitatively accurate stan-
dard deviation of any arbitrary linear measurement.

For an accurate noise analysis, it is best to characterize the
noise of the system across a bandwidth much wider than the
bandwidth used during the experiment. Ideally, the noise is
measured from a frequency well below the scan rate (by a
few orders of magnitude) and up to a frequency that exceeds
the roll-off frequency of the detection system. Accurate PSD
estimation is covered in the Appendix.

A. Linear measurements in the time domain

As described in the previous section, experimental data
are typically acquired in the time domain, and recorded as a
m x 1 vector composed of a deterministic component (d;) and
stochastic component (€,), as in

X, =d + €. Y

The deterministic component contains the information of
interest to the experimenter. A single-valued linear measure-
ment ¢ is defined as any linear combination of the m values
of x;, summarized by the dot product

Q0 =W, - X, (12)

where the 1 x m vector w, is the measurement sampling
function which weighs the linear combination of x; elements.
Note that ¢ is a random variable as it is the weighted sum of
many random variables.

For example, if x; is a time series of the lateral force for
a single scan loop during a friction experiment (see Fig. 1),
the following measurement sampling function results in the
average friction force:

1
wy = —[11,...~1,~1], (13)
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FIG. 8. (Color online) (a) The measurement sampling function
for a friction measurement w,, and (b) the magnitude of its Fourier
transform |k, |. Zero-padding of w,, was used to increase the frequency
resolution of |k,|, as explained in the Appendix. (c) The power
spectral density of detection noise (n?), and the noise transfer function
|k, |* (overlaid in light gray for a scan rate of 10 Hz), which are
multiplied and integrated to obtain the standard deviation of a friction
measurement o, at various scan rates as shown in (d). Detection
noise in this friction experiment is minimized at a scan rate of ~30
Hz, where 60 Hz and harmonics are filtered out by the zeros of
|ky|, as seen in (c). An ideal Nyquist filter at f;/2 was assumed in
this computation. In (a) and (b), only 32 data points were used to
define w,, (prior to zero-padding) for visual clarity. In (c) and (d), a
512-data-point w,, was used to match our experiment.

with an equal number of positive and negative values as shown
in Fig. 8(a). In fact, this is the measurement sampling function
for estimating the hysteresis in a variety of AFM experiments,
including force-distance spectroscopy, for example.

It is inevitable that this measurement has some variability
caused by true physical variability between repeated measure-
ments d; and/or due to noise €,. The topic of this section
is to separate these two sources of variability by accurately
quantifying the variability caused by ;.

For linear measurements, the deterministic and stochastic
components are separable, which follows by combining
Egs. (11) and (12) into

@ =Wy di +w, - €. (14)

The expectation value of the measurement is E(¢) = w,, -
d;. The variance of the measurement 0(3 caused by stochastic
noise €; is a linear combination of the elements of the m x m
temporal covariance matrix V;.

oF = Var(wy€,) = w, Viw),. (15)
The following section uses the properties of stationary noise

to simplify this matrix calculation by transferring this noise
analysis into the frequency domain.
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B. Linear measurements in the frequency domain

The variance analysis of the measurement ¢ can be
transferred into the frequency domain by simply adding the
identity F~!F = I to the previous equation:

o, = Var(w,F ' Fe,) =k, V k], (16)

where the noise transfer function k, = w,F ' and the spectral
covariance matrix V; = Var(Fe,) as defined in the previous
section. For stationary noise, V is diagonal; therefore the
variance of the measurement ¢ can be computed using vectors
rather than matrices, and (16) simplifies to the dot product

o, = lky|* - diag(Vy). (17)

In other words, the variances in the frequency domain
can be added without consideration of covariances because
the random variables at all frequencies are independent (no
off-diagonal terms). In any experiment setting, diag(Vy) is
estimated by the time-averaged power spectral density (n?),
such that

o, ~ lky|* - (n?). (18)

This equation summarizes a simple method for numerically
integrating a power spectral density to obtain the standard
deviation of any linear measurement. In summary, the time-
domain measurement sampling function w,, is known to any
experimenter, and its squared Fourier transform |k, |? provides
the weighting factors for integrating the power spectral density
(n?).

As an example, the noise transfer function |k, | for a friction
measurement is shown in Fig. 8(b). The detection noise of our
AFM, in Fig. 8(c), was integrated with this noise transfer
function at various scan rates. Some of the technical details
relating to spectral leakage and aliasing when calculating the
standard deviations in Fig. 8(d) are discussed in the Appendix.

Figure 8(d) demonstrates that the standard deviation of the
friction measurement due to the detection noise is minimized
at a scan rate of 30 Hz. This result might be surprising, as it
is typically assumed that scanning at a slower rate results in
lower detection noise. However, the opposite can be true in the
dominance of 1/ f noise.

With an accurately calculated value of the friction vari-
ability due to stochastic noise, any additional variability can
be attributed to true variation in friction and interpreted
accordingly.

C. Various linear measurements

To demonstrate the general utility of this approach, the
measurement sampling functions w,, of four examples of linear
measurements along with the noise transfer functions |k,
are shown in Fig. 9(a). The measurements are integrated in
Fig. 9(b), where the detection noise was modeled as 1/f2 and
white noise with a corner frequency near 100 Hz. Depending
on the type of measurement, the noise may be minimized
anywhere between 0 Hz and 1 kHz.

Most measurements have a local minimum in detection
noise where the contribution of 1/f2 noise and white noise
are equal; in the dominance of 1/f? noise faster scanning
is desirable, whereas slower scanning reduces the impact of
white noise.
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FIG. 9. (Color online) Four linear measurements are shown in
the time and frequency domains. The number of sample m = 32
was set low for illustrative purposes only. (b) The standard deviation
of detection noise was computed for m = 256, which is a typical
number of data points per scan line in AFM, at various scan rates
1/T, where T is the duration of a single scan line. The noise was
modeled as 1/f2 and white noise with a corner frequency near
100 Hz. Depending on the measurement, the noise minimum can be
anywhere between 0 Hz and 1 kHz.

In Fig. 9, linear drift is the only linear measurement with
a standard deviation that decreases monotonically as the
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scan rate decreases. This decrease occurs because drift is an
intrinsically time-dependent quantity: the longer the acquisi-
tion, the larger the drift signal becomes. This effect outweighs
1/£? noise in the case of such time-dependent measurements.

D. Discussion

The data in Fig. 1 were acquired with a difference signal
|Ag| = 0.007, which allowed us to reconstruct the PSD of
detection noise by the weighted sum of common-mode and
differential-mode noise of our SLD, using Eq. (4). The
resulting PSD was integrated using Eq. (18) to provide an
accurate measure of the standard deviation expected for
detection noise in our friction experiment. The calculated
detection noise of 15 pN is just below the measured variability
of 19 pN in Fig. 1. This implies that the true friction variability
on gold is barely resolvable above detection noise. On the other
hand, 28 pN of the observed 32 pN of variability on copper is
attributed to true changes in friction.

The true variability in friction on copper chloride is distin-
guishable from detection noise as it is not white. In fact, it is
closer to brown noise, suggesting that there are slow processes
that cause most of the friction variability. Experiments have
shown 1/f variations in friction due to wear debris [43].
Although our experiment is well below the onset of wear,
studying the differences in statistical distributions of friction
on a copper chloride monolayer vs gold can help understand
the effects of adsorbed monolayers on nanoscale friction [44].
This would provide additional information regarding changes
of the tip-sample junction composition, such as rearrangement
of the tip atoms or sporadic changes in the ionic composition
near the surface that may affect the coadsorption of chloride
with the copper monolayer, all of which can contribute to
changes in friction. Furthermore, the distribution of friction
can be related to the statistics of the stick-slip jump events to
understand the effects of thermal fluctuations as well as the
atomic structure and orientation of the surface on the outcome
of a nanoscale friction experiment [45]. Alas, a reduction
in detection noise is required to study the true fluctuations
in friction on copper chloride vs gold and their statistical
properties in our experiment.

For the data in Fig. 1, our scan rate was set to 25 Hz, which
falls within the minimum region around 30 Hz as seen in
Fig. 8(d). This region occurs because of the joint minimization
of 1/ f and white noise, as well as the rejection of 60 Hz and
harmonics for a scan rate of exactly 30 Hz. Notice that the
noise transfer function |k,| of a friction experiment has zeros
at even harmonics of the scan rate. At these frequencies, an
integer number of periods fit into the friction measurement
sampling function w,, and therefore cause zero error in friction
regardless of their amplitude.

It would have been worthwhile to properly center the
detection light beam (]Ag| = 0) at the beginning of the
experiment to remove common-mode noise which contributed
~20% of additional detection noise. Any further reduction in
detection noise would require design changes to our AFM.
The use of softer cantilevers [33] would reduce the detection
noise of lateral force, which to first order scales linearly
with torsional stiffness. Secondly, the reduction of the light
beam divergence would also lead to lower detection noise.
The light beam divergence can be reduced by using a smaller
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collimated light beam diameter, a longer effective focal length
for focusing the light beam, exploiting the stress-induced
cantilever radius of curvature [46], or patterning the cantilever
with a diffraction grating [14].

It is instructive to note that boosting the light power, by
coating the cantilever or increasing the SLD drive current,
would not reduce the detection noise because the friction
detection noise is dominated by 1/ f noise for scan rates below
100 Hz on our system. This occurs because the hysteresis
noise transfer function, seen in Fig. 9(a), has a peak at low
frequencies around the scan rate, whereas higher-frequency
shot noise is mostly averaged out by the measurement sampling
function. Increasing optical power only reduces detection shot
noise. Actually, coating the cantilever would only increase
the normal force noise at low frequencies due to coupling
between optical power fluctuations and cantilever thermally
induced bending [14].

VII. STOCHASTIC SIMULATION

Certain experiments require simulation, rather than calcu-
lation such as performed in the previous section, to quantify
the effects of noise on the outcome of the experiment.
Specifically, this is necessary for nonlinear situations, for
which a linear measurement sampling function does not exist
and a PSD cannot be simply integrated. In this section, a
method for simulating stochastic Gaussian noise from any
arbitrary spectral distribution is presented, and is used in
a friction experiment simulation to quantify the effects of
mechanical vibrations of the AFM on atomic-scale friction.

A. The inverse fast Fourier transform method
for simulating Gaussian noise

The detailed description of the probability distribution of
power spectral densities in Sec. V contains the ingredients
for simulating stochastic Gaussian noise. The true power
spectral density n% may be approximated by a measured (n?) or
calculated from a theoretical model. Given an equally spaced
m x 1 vector (n?), a frequency-domain noise vector e f can be
simulated as follows.

The first half of €y must be drawn from a complex
normal distribution; the real and imaginary elements of €y, ,
for each frequency bin are drawn from independent normal
distributions with mean 0 and variance (n?) /2, as in

2 2
€ =N<o,(”—2>> FiN (OMT)) (19)

Then, the €  must be arranged to comply with the properties
of a real signal in the time domain [39]: the negative frequen-
cies must be complex conjugates of the positive frequencies,
suchthate s = [ey,, 6}1/2], and 63}1/2 must be flipped. Finally, the
resulting 2m X 1 vector €y can be converted to a time-domain
noise vector by the inverse Fourier transform matrix:

€& =F 'eg, (20)

which can be efficiently computed using the fast Fourier
transform (FFT).

The caveat in using this method is that the 7! is a circulant
matrix, making the first and last data points of €, contiguous,
and therefore strongly correlated. This assumption has no

031104-11



ALEKSANDER LABUDA et al.

consequence for generating noise with no periodicity or
long-range correlation, such as white noise, for example. The
circulant property is also relatively inconsequential for an
oscillatory signal which decorrelates within the time window
of the generated data set. In any case, the safest approach
is to generate 2x more data than requested and to discard
half of the data. This results in a m x 1 noise vector ¢;. For
1/ f noise, which is divergent, it may be necessary to discard
more than half the data to achieve a desired level of statistical
accuracy, depending on the exponent of the 1/ f noise. This
method was used to generate the Gaussian noises in Figs. 5
and 6 from their PSDs, for example.

B. Simulating displacement noise

The lateral mechanical vibrations of our AFM were
measured in air by bringing a cantilever (PPP-NCHAuD,
Nanosensors) into contact with a flat sapphire sample. A stiff
lateral contact was ensured by applying a large normal load
of several hundred micronewtons [47]. As long as the lateral
contact stiffness exceeds the lateral cantilever stiffness, the
power spectral density of the lateral signal is an accurate mea-
sure of the lateral displacement noise. Because our light beam
is circularly symmetric, the lateral and normal sensitivity (in
nm/V) is related by a simple geometric factor [33] (calibrated
before making contact). Lastly, detection noise was subtracted
from the measurement to isolate the lateral displacement noise,
shown in Fig. 10(a). The lateral displacement noise integrates

(a) measured lateral displacement noise

,_.
o
0~
T
14
N
B
S
jan)
N

75}

—_
e |
w
T

spectral density (fm/~Hz)

10 10 10 10 10
frequency (Hz)

(c) resulting friction loop with and without displacement noise

0.3 T T T T T
0.2
Z
£ 0.1
o
2
S 0
g o1
=
-0.2 N
| multiple slip events*” |

0 0.5 1 1.5 2 2.5 3
lateral position (nm)

PHYSICAL REVIEW E 86, 031104 (2012)

to 51 pm. Although this approach is highly prone to calibration
errors (up to a factor of 2), this does not qualitatively affect the
conclusions drawn in the Discussion subsection.

In an ideal friction experiment, the cantilever base is
scanned back and forth smoothly across the sample with
some velocity v. In reality, displacement noise causes the
scanning to be erratic, as shown in Fig. 10(b). In this case,
displacement noise €gisp in the time domain was simulated
using the inverse fast Fourier transform (iFFT) method from
the spectral density defined in Fig. 10(a), and then added to
the smooth triangular wave.

Although it is strictly incorrect to simulate 180 Hz line
noise using the iFFT method (because it is a spectrally
pure noise source with fixed amplitude and random phase),
this noise source carries a negligible amount of power in the
measured PSD. Note that the noise peak near 540 Hz is not
spectrally pure. Using a “direct” method of averaging which
suppresses spectral leakage (see Appendix), the noise peak
near 540 Hz is unequivocally shown to span a wide bandwidth:
534-542 Hz. The breadth of this peak reflects the fact that this
mechanical vibration of the sample is a stochastic process
with a short coherence time relative to the time scale of the
experiment. This justifies the iFFT method’s assumption of
uncorrelated frequencies for simulating this noise source.

Both the ideal and erratic scanning profiles in Fig. 10(b)
were used as inputs to the following atomic stick-slip
simulation.

(b) simulated lateral position of the cantilever base during friction loop
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FIG. 10. (Color online) (a) The lateral displacement noise was measured on our system for 400 s. The direct method of averaging was used
to prevent spectral leakage; a 51-point average led to a frequency resolution of 0.1275 Hz. The detection noise was subtracted. The inset shows
the prominent source of noise near 540 Hz, which is stochastic in nature. (b) The iFFT method was used to simulate displacement noise in
the time domain, which affects the lateral scanning of the tip in a friction experiment. (c) A friction loop was simulated at zero temperature
without and with displacement noise; the results are shown as thick and thin lines, respectively. (d) The displacement noise lowers the friction

by ~ 3x and causes signal variability.
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C. Simulation of atomic stick-slip

This simulation is based on the one-spring Tomlinson model
[48], which assumes that the potential U,(x) in the lateral
direction x is sinusoidal with a period defined by the atomic
lattice of the substrate. A time-varying harmonic potential of
the contact is defined by the effective lateral contact stiffness
k, as in

Uc(x,1) = 3k(x — vt + €qisp)?, (1)

which includes the scanning velocity v and displacement noise
€qisp discussed earlier. At every time step in the simulation, the
new tip position is reassigned as the new local minimum in
the combined potential U = U, + U,. This implicitly assumes
that the system temperature is zero. It also conveniently makes
the following simulation purely deterministic, such that the
effects of stochastic displacement noise, simulated in the
previous section, can be isolated unambiguously. To this end,
detection noise was also omitted from the simulation.

The parameters used for the simulation were taken from a
previous simulation of atomic stick-slip performed by Socoliuc
et al. [49]. A tip was scanned at v = 3 nm/s across NaCl
with a lattice constant a = 0.5 nm, and an effective lateral
contact stiffness k = 1 N/m. The corrugation energy E, of the
sinusoidal potential was set to 0.237 eV, resulting in n = 3,
where n = 272 E(/ ka®. The n parameter defines the stick-slip
(n > 1) and the continuous sliding (n < 1) regimes of friction.

By assuming no displacement noise, the simulation results
in a predictable stick-slip pattern represented by thick gray
lines in Fig. 10(c). Including displacement noise in the
simulation strongly affects the outcome of the experiment,
as shown by the overlaid thin lines in Fig. 10(c). The timing
of the slip events has significant variability. Furthermore, the
measured friction force is much lower relative to the ideal
case, as summarized by the 100 simulations in Fig. 10(d). The
friction loops of all 100 simulations are available elsewhere
(see Supplemental Material [50]).

D. Discussion

The peak lateral force required to initiate a slip event seems
to have dropped significantly due to displacement noise, as
seen by comparing both friction loops in Fig. 10(c). However,
this is simply an illusion caused by averaging the data to an
effective 512-Hz sampling rate. On the time scale of each
simulation step (5 kHz), the lateral force that leads to a slip
event is exactly 0.239 nN by virtue of the assumed Tomlinson
model. The displacement noise at high frequencies causes this
lateral force threshold to be reached prematurely, resulting
in early slip events and a threefold reduction in friction. This
illustrates the nonlinear nature of this simulation: displacement
noise can cause an early slip event, which is usually irreversible
because the cantilever subsequently remains in its new local
minimum of the combined potential U. Displacement noise
can also induce back-and-forth slip events, as pointed out in
Fig. 10(c), where a large stochastic mechanical disturbance
causes the tip to jump back and forth between two lattice
positions. Similar events have been observed experimentally
[51] and postulated theoretically [52,53]. Lastly, the stochastic
nature of the displacement noise also causes significant
variability in friction, as seen in Fig. 10(d). Such variability
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would not be observed if dynamic superlubricity were induced
by a deterministic sine wave [31], for example.

The mechanism that causes the suppression of friction de-
scribed so far is akin to a thermal activation process described
by Arrhenius transition state theory. Thermal activation of slip
events has been theoretically proposed by Gnecco et al. [48]
and Sang et al. [54], and is still under study today [55].
Such models predict a decrease in friction with increasing
temperature as well as a logarithmic dependence of friction
with scanning velocity.

Similarly, stochastic displacement noise can assume a loga-
rithmic velocity dependence because the mechanical activation
process reported here is analogous to thermal activation. For
Gaussian displacement noise, the amplitude of the tip-sample
vibrations follows a normal distribution, such that the instan-
taneous potential energy (amplitude squared) of the system
follows an exponential distribution. Secondly, the attempt
frequency (the rate parameter in the Arrhenius equation)
relates directly to the coherence time of the mechanical noise.

The logarithmic velocity dependence of displacement noise
is shown in Fig. 11. The slight deviations from ideal logarith-
mic behavior are due to the fact that the attempt frequency is not
single-valued in this model; rather, it is defined by the displace-
ment noise spectrum in Fig. 10(a). However, most of the power
of the displacement noise falls in the 534-542 Hz frequency
range, described earlier, which dominates the logarithmic
dependence observed in Fig. 11 for velocities up to 400 nm/s.
At that velocity, the stick-slip frequency (800 Hz) exceeds the
mechanical vibration frequency (~540 Hz), and the idea of an
attempt frequency breaks down. Although the displacement
noise still causes variability in the friction data at high sliding
velocities, the mechanical vibrations are just as likely to
increase as to decrease the friction, such that the average
friction with and without displacement noise both coincide.

Recently, the effects of athermal instrumental noise on
friction have been modeled parametrically by Dong et al.
[56] as a white force noise amplified by the cantilever
lateral resonance. This instrumental force noise was assumed
temperature independent and predicts a friction plateau at
cryogenic temperatures where thermal activation becomes

100 T T T IR LIS T
sof e -
Z
S 601 i
=
2
3 40 - i ~ without displacement noise |
w0k e with displacement noise
ST s standard deviation
O 1 1 1 1 1

10° 10' 10° 10° 10*
sliding velocity (nm/s)

FIG. 11. (Color online) The friction simulation was performed
at varying velocities to demonstrate the logarithmic velocity depen-
dence of friction in the presence of displacement noise. A plateau
occurs once the stick-slip frequency exceeds the displacement noise
frequency (dominated by noise near 540 Hz). The signal variability
decreases once this plateau is reached. The error on the mean roughly
corresponds to the diameter of the circles.
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negligible. In other words, the instrument was assumed to have
a finite effective temperature caused by instrumental noise.

In contrast, our simulation uses an empirical measurement
of the displacement noise of our instrument as input. The
dynamics of the cantilever play no role in this simulated
experiment because the lateral resonance frequency of the
cantilever, say 150 kHz, greatly exceeds the mechanical
vibrations of the AFM (<3 kHz). In that respect, the cantilever
can be accurately described as an ideal force sensor that does
not affect the outcome of the experiment. Nevertheless, the
displacement noise can be attributed a cantilever-equivalent
effective temperature. By the equipartition theorem, the
cantilever in this simulation is expected to have 12 pm of
vibrational noise at room temperature (/kp T/ k.), while there
is 51 pm of integrated displacement noise (across the 1 Hz to
10 kHz bandwidth). In other words, the cantilever temperature
would have to be 5500 K for the integrated cantilever noise to
exceed the integrated displacement noise.

We now note the problematic fact that the displacement
noise of an AFM is expected to be temperature dependent.
The mechanical response of an AFM has been shown to change
drastically at cryogenic temperatures [57]. Due to the lowered
damping of hardware components in the AFM, the external
noise coupling drives the mechanical components with larger
amplitudes and can promote the suppression of friction at
cryogenic temperatures. This may result in a nonmonotonic
temperature dependence of friction that would be characterized
by a drop in friction at low temperatures.

We conclude that the reduction of friction by mechanical
dithering of the sample, known as dynamic superlubricity [31],
inadvertently occurs due to inevitable mechanical vibrations
of an AFM. The degree of this friction suppression depends
on a multitude of experimental parameters and the specific
displacement noise of the AFM in question. Therefore, a
general quantitative assessment of the problem cannot be
made. However, the method proposed here can be used to
estimate the expected impact of displacement noise on any
particular system and experiment. Measuring the temperature
dependence of the displacement noise is also recommended
before performing an experiment for studying the temperature
dependence of friction.

VIII. SUMMARY AND CONCLUSIONS

The power spectral density (PSD) of detection noise may
change during an experiment if the light beam does not
remain perfectly centered on the photodetector. This PSD is
measurable and predictable after characterizing the common-
mode and differential-mode noise of the light beam used to
measure the cantilever deflections.

An intuitive method for integrating a PSD to provide
accurate estimates of any linear measurement was presented,
allowing predictive power over experiments, and informed
analysis of measured data. We have shown that the variability
in measured friction may be dominated by detection noise even
in situations with clearly resolved stick-slip. Interestingly,
increasing the light power (by a reflective coating, for example)
does not reduce this friction variability, which is limited by
1/ f angular noise of the light beam. In the dominance of
1/ f noise, faster scanning reduces the impact of noise on the
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measurement. From a noise analysis perspective, the optimal
scan rate for friction experiments is 30 Hz, on our particular
AFM.

The power spectral density is a powerful tool for noise
analysis of stationary noise, either stochastic or deterministic.
Understanding the statistical properties of measured PSDs for
different noise sources provides the necessary foundation for
the simulation of AFM experiments affected by stochastic
noise. Such simulations allow the assessment of the relative
contribution of detection, force, and displacement noise
sources in any particular AFM experiment.

In this work, stochastic simulation of measured displace-
ment noise was used to quantify the effects of mechanical
vibrations on the outcome of a friction experiment. Assuming a
one-spring Tomlinson model with typical scanning conditions
and zero temperature, our simulation predicts that the dis-
placement noise can cause a logarithmic velocity dependence
of friction, induce multiple back-and-forth slip events in the
atomic stick-slip process, and cause significant variability in
measured friction.

An attractive feature of the iFFT method of stochastic
simulation is that it is not restricted to parametric models:
any arbitrary numerically defined PSD can be used as input.
Mechanical vibrations between the tip and the sample, for
example, can only be empirically measured, and may be
difficult to accurately or efficiently describe parametrically.
We have attributed a stochastic sample vibration near 540 Hz
as the largest contributor to athermal friction suppression and
increased friction variability on our system.

Although we have demonstrated noise analysis and stochas-
tic simulations in the context of friction experiments, these
methods can be used for a wide range of AFM experiments, and
extend to dynamic AFM measurements as well [58]. Stochastic
simulations can be used for the optimization of experimental
protocols by aiding in the selection of experimental param-
eters. Tandem simulations can also be used alongside actual
experiments to diagnose the cause of variability, and to assess
whether a measurement is limited by fundamental sources of
noise, mechanical vibrations, or simply due to true variability
of the physical system being measured.
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APPENDIX

This Appendix outlines certain technical details regarding
the integration of PSDs, as well as their estimation using
Fourier transform methods. Before proceeding, the reader
should be familiar with the concepts of “spectral leakage”
and “aliasing,” described in the following paragraphs.

Spectral leakage occurs because a perfect sine wave
(infinitely long in time) cannot be measured in practice: it
is inevitable that its measurement is performed within a finite
time window. Truncating a perfect sine wave introduces new
frequency components into the measurement. In other words,
the power of the single frequency sine wave “leaks” into
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adjacent frequencies. This description generalizes to signals
of any arbitrary shape.

Aliasing is due to the finite-time sampling of a signal. This
effect causes familiar phenomena such as the appearance of car
wheels rotating backwards in films, for example. Similarly, in
signal processing, slowly sampling a fast signal “aliases” fast
frequencies onto slower ones. For a sampling rate of 100 Hz,
different sine waves at 10, 90, 110, 190, 210 Hz, etc., all appear
identical and indistinguishable from a 10-Hz sine wave.

1. Numerical details for PSD integration

In order to numerically integrate an average power spectral
density (n?) weighted by a noise transfer function |k, |, both
vectors must share an identical frequency basis. Typically, the
system noise is characterized before the experiment over a
large frequency range such as 1072-10° Hz, which is much
wider than the experiment bandwidth of, say, 10°~10° Hz.
However, noise at frequencies below and above the experiment
bandwidth affect the measurement by the mechanisms of
spectral leakage and aliasing, respectively.

We use zero-padding and zero-interleaving in the time
domain as methods for extending the frequency range of |k, | to
match the frequency range of (n?) for an accurate integration
of the entire frequency spectrum.

Before performing the Fourier transform on the measure-
ment sampling function w,, to obtain |k, |, zero-padding should
be adjusted to match the frequency resolution of |k,| to
the frequency resolution of (n?), as illustrated in Fig. 12.
Zero-padding takes into account the effects of spectral leakage
on the measurement.

zero-interleaving

1
|

" zero-padding
Nyquist
100 yquist zones _l_l_l_ﬂ

weight w,,

—1/m

weight |k,|
L
) (nN¥/Hz)

10

(I

T
10” T 10° £ 10
frequency (Hz)

FIG. 12. (Color online) The sampling function w, of a hysteresis
measurement is shown. The number of data points was selected
as m = 16 for plotting purposes only. Zero-padding the signal
increases the frequency resolution and zero-interleaving increases
the maximum frequency. The creation of Nyquist zones above the
sampling frequency simulates aliasing. Both are tuned such that the
frequency basis of the noise transfer function |k,| corresponds to the
measured detection noise (n?). The |k, | here is shown for m = 256
in the second plot, for a scan rate of 10 Hz.
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Next, zero-interleaving is used to increase the maximum
frequency of |k,| beyond the roll-off frequency of (n?).
Zero-interleaving takes into account the effects of aliasing
during analog-to-digital conversion, by extending |k,| to
higher frequencies. Every zero that is interleaved generates
a new Nyquist zone, as shown in Fig 8(b). Typical ADCs
have a fixed integration time per sample, such that lowering
the sampling rate from its maximum causes “dead time” in
between samples leading to aliasing; this process is mimicked
by zero-interleaving as illustrated by Fig. 12(a). Note that
the peaks for each Nyquist zone indicate the unnecessary
and undesirable aliasing of high-frequency noise into the
measurement. Two methods can be used to reduce aliasing:
(1) oversampling the signal by operating the ADC at its
maximum sampling rate removes the Nyquist zones as all
the high-frequency noise is measured and averaged by the
measurement sampling function; (2) low-pass filtering the
signal (prior to sampling) at a frequency below the Nyquist
frequency ( f;/2), such that no noise remains in the Nyquist
zones. Both of these methods prevent high-frequency noise
from aliasing into the measurement bandwidth.

The Fourier transform of the zero-padded and zero-
interleaved sampling function is shown in Fig. 12, overlaid on
the detection noise. In practice, the matching of both frequency
bases cannot be achieved perfectly, such that appropriate
interpolation is used as a final step. Finally, the variance of the
measurement can be computed by the dot product: |k, |2 - (n?).

2. Accurate PSD estimation

The covariance matrix V; is experimentally estimated by
the average power spectral density vector (n?). The accuracy
of this estimation is mainly limited by spectral leakage, drift,
and statistical biases, which are the topics of this section.

a. Spectral leakage and windowing. Omitting windowing
during the Fourier transform (i.e., using a rectangular window)
causes biases when estimating 1/f noise due to spectral
leakage. For example, a 2x bias in the estimation of 1/f>
noise occurs because the rectangular window falls off with
1/£? itself; convoluting a 1/f? noise with a 1/f? window
results in 2/f2. Furthermore, spectral leakage correlates
adjacent frequencies of a spectral density, thereby violating the
assumption of a diagonal spectral covariance matrix presented
in Eq. (9). This section presents a method for reducing the
effects of spectral leakage compared to traditional methods
used for calculating (n?) from a time series.

Bartlett’s method [59] for power spectral density estimation
amounts to dividing a time series into smaller segments,
calculating their respective spectral densities, and averaging
them. This reduces the variance of the (n?) estimation, at
the expense of reducing the frequency resolution. Spectral
leakage in this situation becomes much more problematic,
because the duration of each time series is much shorter.
Welch’s method [60] offsets this problem to a certain extent,
by windowing each time series. This reduces the effects of
the time-window edge discontinuities of each time series.
However, significant spectral leakage still occurs regardless
of the windowing function that is used.

Arguably, the main advantage of these two methods is
the reduction in necessary computing power, which was
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(a) Welch method
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FIG. 13. The same simulated noise data were used for all three
power spectral density estimations. The line noise peaks (60, 120,
180 Hz) were modeled as perfect sine waves with an arbitrary phase.
(a) The Welch method causes estimation bias at low frequencies (1)
and spectral leakage (2). (b) The direct method solves these problems,
but the increase in variance at high frequencies (3) remains illusory.
Also, the bandwidth of noise peaks can become thinner than the
graphical linewidth of 0.176 mm (4), thereby distorting the perception
of the power of each noise source. (c) These problems are solved
using logarithmic averaging. All methods used a Hann window when
computing the Fourier transform.

scarce in the 1960s when these methods were developed.
The availability of modern computing led us to adopt a
more simple and direct method of PSD estimation for which
spectral leakage can mostly be eliminated: a single PSD of the
entire time series is calculated (after appropriate windowing)
followed by averaging groups of adjacent frequency bins to
reduce the variance [61]. The same trade-off between variance
and resolution remains, but spectral leakage can be tuned
arbitrarily small and the estimation bias at low frequencies
is prevented. This is illustrated in Figs. 13(a) and 13(b), where
Welch’s method is contrasted with the “direct method.”

Figure 13(c) uses the same data as Fig. 13(b) which
were subsequently averaged using logarithmically spaced
frequency bins, making it more suitable for plotting on a
logarithmic scale. Basically, for a linearly spaced PSD in
the frequency range [a,b], the N-sized logarithmically spaced
PSD is generated by grouping all data points that fall within
the frequency range [ae'~DINC/O/N qin(G//N] \where i is the
bin index from 1 to N.

PHYSICAL REVIEW E 86, 031104 (2012)

This presents a quantitatively more accurate visual repre-
sentation of the power spectral density for applications where
alogarithmic frequency axis is more appropriate, such as static
AFM. In reality, the variance of shot noise decreases towards
the right of a logarithmic graph where there are many more
data points which estimate shot noise for a given fractional
bandwidth Aw/w. (Note that in certain applications, such as
dynamic AFM, the figure of merit is the linear bandwidth Aw
in which case logarithmic averaging is not appropriate.)

Also, certain noise peaks appear significant in Fig. 13(b),
but should be disregarded because their bandwidth is very
small and therefore the corresponding power is insignificant;
for example, of the two peaks labeled (4) that appear identical
in Fig. 13(b), the one to the right has a bandwidth that is 30 x
smaller, which is apparent by inspection of the graph plotted in
Fig. 13(c). We stress that logarithmic averaging in Fig. 13(c)
is used only for visual representation of PSDs, whereas the
direct method is used in noise analysis as it contains more
information.

b. 1/f noise vs drift. As a disclaimer, it should be noted
that the distinction between drift and 1/f noise is the topic
of debate, and the discussion presented herein is based on the
assumption that drift is caused by a deterministic process,
while 1/f noise is inherently stochastic. As described in
Sec. V A, the distinction between stochastic and deterministic
noise can be a matter of perspective.

Although 1/f noise and drift can be difficult to distinguish
experimentally [62], they require different treatment. For
example, the average PSDs of both linear drift and Brownian
motion converge to a 1/f? power spectrum. Brownian motion
is a stochastic process, with a zero mean, and the PSD
correctly estimates its variance (assuming spectral leakage is
appropriately handled). In contrast, drift can be thought of
as a deterministic process on the short time scale of a single
experiment. Drift has a predictable effect on the mean (rather
than variance) of a signal, and therefore is not accurately
described by a PSD.

Properly quantifying the variability of drift itself would
require a PSD measurement taken across many days, and a
strong component is expected at a frequency of day~' because
temperature cycles between day and night are prominent.
In fact, the 1/f% power spectrum of linear drift at shorter
experimental time scales is simply a result of spectral leakage:
the long time scale drift oscillations are truncated by a finite
time window, and the edge effects of this truncation result
in spectral leakage. The 1/f? power spectrum of linear drift
relates only to the rectangular windowing function, and can
be changed to 1/f® simply by choosing a Hann windowing
function, for example. Furthermore, a PSD of any finite signal
is equivalent to the PSD of an infinite periodic signal; the PSD
of linear drift is equivalent to the PSD of an infinite sawtooth
wave. The 1/f2 spectrum quantifies the harmonics of that
sawtooth wave, which is clearly an incorrect representation
of linear drift. In summary, the observed spectrum of drift is
simply an artifact of the finite Fourier transform method, and
its shape provides no information about the actual drift.

For these reasons, drift must be subtracted from any signal
before taking its PSD. It is inevitable that any estimate of
drift (to be subtracted) will be corrupted by 1/ f noise, and
conversely the measurement of 1/f noise will be altered
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by the drift subtraction. For short experiments, a simple
linear drift can be a very good approximation, while longer
experiments may require the subtraction of nonlinear drift that
may be modeled as polynomial drift, or logarithmic creep, for
example. All the PSDs reported in this paper were calculated
after subtraction of a linear drift, judging that the remaining
noise can accurately be described as “variance” on the time
scales considered.

c. Amplitude averaging. The amplitude spectral density |n|
rather than the power spectral density |r|? is often used in
noise analysis. As derived in Sec. IV, each random variable in
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|n|? is exponentially distributed, implying that each random
variable in |n| follows a Rayleigh distribution. Squaring and
averaging are noncommutative operations: (|n|?) # (|n|)? (the
average of the squares is not the square of the average).
However, the two relate by a calculable statistical bias, and
the average power spectral density of stochastic noise can
be determined from the average amplitude spectral density
by

4
(In*) = ;<|n|>2. (A1)
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