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ABSTRACT
Artificial neural networks are based on mathematical models of biological networks, but it is not clear how similar these two networks are.
We have recently demonstrated that we can mechanically manipulate single neurons and create functioning synapses. Here, we build on
this discovery and investigate the feasibility and time scales to build an artificial neural network with biological neurons. To achieve this,
we characterized the dynamics and forces when pulling functional axonal neurites using a micromanipulation technique with maximum
speeds about 300 times faster than the average natural growth rate of 0.0017µm/s. We find that the maximum force required to initiate and
extend the neurites is about 1nN. The dynamics of the mechanical extension of the neurite is well described by many elastic springs and
viscous dashpots in series. Interestingly, we find that the transport networks, specifically the actin network, lags behind the mechanically
pulled structure. These insights could potentially open a new avenue to facilitate and encourage neuronal regrowth not relying on chemical
queues. The extracted mechanical parameters and timescales characterize the neurite growth. We predict that it should be possible to use a
magnetic trap to wire an artificial network such as a multi-layer perceptron in 17 hours. Once wired, we believe the biological neural network
could be trained to process a hand-written digit using artificial neural network concepts applied to biological systems. We show how one
could test the stability and robustness of this network by axotomizing (i.e. cutting) specific axons and reconnecting them using mechanical
manipulation.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5086873., s

I. INTRODUCTION

Inspired by R. Feynman’s statement ‘What I cannot create, I
do not understand’ (written on his blackboard at the time of death
in February 1988), we are investigating new methods to build neu-
ronal networks using live neurons. Artificial neural networks seem
to learn in a phenomenologically similar way to the brain. The brain
is extensively interconnected, estimated to have about 86 billion neu-
rons1 and around 100 trillion connections, it has feedback and feed-
forward loops2 and the strength of its signal transmissions can be
adjusted by adjusting the strength of its synapses.3,4 Similarly, arti-
ficial neural networks, which are based on mathematical models of
a biological neural network, are highly interconnected, often incor-
porate feedback and feedforward loops and the strength of certain
connections can be adjusted through backpropagation learning.5
Despite these similarities, the two neural networks do not process
information or learn in the same way. They also differ markedly in
terms of power consumption. It is not currently possible to record

all the action potentials of a biological system. For example, every
neuron and every connection in the model organism C. elegans
have been mapped, but we cannot record from every neuron in that
system.6

In the present work, we further develop a micromanipula-
tion technique that can be used to extend neurites from in-vitro
axons to build a biological neural network where the topology of
the network is exactly known and controlled, and all action poten-
tials can in principle be measured. To achieve this, the neurons
would be grown on a high-density multi-electrode array7 such that
each neuron is on an electrode, while the axons would be mechan-
ically manipulated to connect neurons. A simple artificial neural
network, such as a multi-layer perceptron which could recognize
hand-written digits,8 could be built out of neurons, and learning
algorithms could be tested by stimulating neurons using the multi-
electrode array. In this way, this biological neural network could
be directly compared to a topologically identical artificial neural
network.
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Growing an interconnected biological neural network with
known topology is difficult due to the limited control and speed
of axonal growth: for rat hippocampal neurons grown in-vitro,
the average elongation rate is only 0.0017µm/s.9 By adhering to
the axon and applying mechanical tension, Bray showed that neu-
rites could be initiated out of the nucleus de novo and extended
faster than normal growth.10 Numerous subsequent experiments
by Heidemann’s group showed that neurites can be character-
ized as viscoelastic materials exhibiting growth at speeds which
are directly proportional to the applied force.11–13 However, when
a neurite is extended at speeds above 0.055µm/s, the neurite
thinned and broke.14 Growth in the central nervous system occurs
through stationary periods and periods where the axonal elon-
gation rate can be 1-2 orders of magnitude higher than the
average rate,9,15 so an induced growth rate of 0.055µm/s is not
unreasonable.

In previous experiments, we showed that by coating microbeads
with a positively charged polymer (Poly-D-lysine (PDL) and netrin),
an axon will form a synapse with the bead.16,17 By initiating the neu-
rite from this synapse, we are able to pull at speeds of greater than
0.33µm/s over mm scale distances!18,19 Twelve hours after being con-
nected to another neuron, the neurites were shown to be function-
ally connected using a double patch clamp measurement.18 Here,
we build on these results by assuming neurites pulled by the same
method would also be functional. We characterize the remarkable
growth of these neurites and describe the growth using a model
which consists of many springs and dashpots in series. We inves-
tigate the limits and versatility of this biophysical system with the
goal of determining the parameter space for building a perceptron
from real neurons. We propose a method for building a multi-layer
perceptron with 496 neurons and 4215 connections with the goal
of eventually building a more complex system such as C. Elegans
with 320 neurons, 6393 chemical synapses, 890 gap junctions and
1410 neuromuscular junctions.6 Simpler biological circuits such as
feedback or feedforward loops which require only a few neurons
and electronic networks such as a 4-2-4 encoder and decoder could
be similarly built using our technique to investigate the role of the
diameter of the connecting axon on the transfer function of the
neuronal system.

II. MATERIALS AND METHODS
A. Neuronal cultures

All neuronal cultures were approved by McGill University’s
Animal Care Committee (Protocol #: 2013-7422) and conformed
with the Canadian Council of Animal Care Guidelines. Hippocam-
pal neurons were dissociated as described by Lucido et al.,16

from Sprague Dawley rat embryos of either sex and plated
on 100µg/mL Poly-D-Lysine (PDL) (Sigma-Aldrich) coated Mat-
Tex dishes or Warner Instruments glass coverslips with neuron-
specific microfluidic chambers designed by ANANDA Devices
(https://anandadevices.com/) to ensure experiments were per-
formed on axons. Cells were cultured for 7-21 days in-vitro
(DIV), replacing the media every 2-3 days. On the day of the
experiment, the microfluidic chambers were removed. During the
experiment, media was replaced with physiological saline [135mM
NaCl (Sigma-Aldrich), 3.5mM KCl (Sigma-Aldrich), 2mM CaCl2

(Sigma-Aldrich), 1.3 mM MgCl2 (BDH), 10mM Hepes (Ther-
moFisher Scientific) and 20mM D-Glucose (Invitrogen)],20 which
was constantly replaced so that the osmolarity stayed within physio-
logical conditions.

B. Atomic force microscopy
Atomic force microscopy experiments were conducted using

either an MFP-3D-BIO AFM (Asylum Research) mounted on an
Olympus IX-71 inverted optical microscope or a Bioscope-3 with
Extender Module mounted on a Zeiss Axiovert s100tv. In both cases,
the sample was mounted in a fluid cell, with access for the AFM can-
tilever, and viewed from the bottom with the optical microscope at
either 40x (air) or 100x (oil immersion) Zeiss objective lenses. For
force measurements, the Nanosensors qp-SCONT cantilever was
used with spring constant 0.01N/m (normal force measurements)
or 0.09N/m (lateral force measurements), and partial gold coat-
ing to minimize drift due to temperature changes and adsorption.
Cantilevers were calibrated using the Sader method for normal and
lateral spring constants.21,22

C. Pipette micromanipulation
Cell media for 7-21 DIV neurons was replaced with 100nM

of the live cell fluorogenic F-actin labeling probe (Si-R actin,
Spirochrome) in 2mL of cell media. Immediately after, 10µm beads
coated for 24 hours with 100µg/ml PDL as described previously17

were added such that the probe and the beads were incubated
with the neurons for 6-9 hours. The medium containing the probe
was removed along with most unattached PDL-coated beads and
replaced by physiological saline solution. The neurons were imaged
using a Zeiss Axiovert 200M microscope and a 63x objective (Zeiss),
with the F-actin probe illuminated by a xenon arc bulb (Sutter
Instruments). Pipettes (King Precision Glass) of inner and outer
diameters of 1mm and 1.5mm respectively were pulled using a Sut-
ter Instruments P-87 pipette puller to a tapered opening of between
2-6µm. They were positioned using an Eppendorf InjectMan NI 2
micromanipulator, and negative suction was applied via tubing con-
nected to a syringe. Initially a positive pressure greater than the
capillary pressure was applied to generate a positive flow to avoid
collection of debris on the pipette. Once the pipette opening was
manipulated to be in contact with a bead adhered to a bundle of
axons, a negative pressure was applied to the pipette, picking up the
bead and initiating a neurite (Figure 1). The bead was manipulated
vertically ∼3µm to avoid scraping the neurite along the surface of the
dish, then it was moved at a constant velocity of 0.1-0.5µm/s parallel
to the glass surface. The neurite was manipulated 100-250µm, then
deposited on another bundle of axons by applying positive pressure
to the pipette.

D. Axotomy and reconnection
For AFM axotomy and reconnection, the Bruker MLCT-C can-

tilever (spring constant 0.01N/m) was used to axotomize the axon,
while the Bruker MLCT-D cantilever (spring constant 0.03N/m)
with PDL coated bead on the same substrate was used to recon-
nect the axotomized axon. For pipette axotomy and reconnection,
pipettes with a flexible ending of spring constant 0.01N/m were
pulled such that they could be pushed into the glass surface without
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FIG. 1. (a) A pulled pipette (triangular shadow at top of image) applies suction to a
PDL-coated bead (circled) and initiates a neurite by pulling upwards ∼3µm. (b) By
pulling horizontally on the bead (circled) at a constant velocity of 0.1-0.5µm/s, the
neurite (indicated by the arrow) is extended.

breaking. To avoid stretching the axons, the sample stage piezo was
moved using a step function, moving the sample as fast as possible
to make a clean cut. To test axonal fusion, a membrane impermeable
dye (Alexa Fluor 488 Hydrazide) was injected at 10mM concentra-
tion in an intracellular solution as previously described18 by using
a patch pipette with a 2-6µm opening and an Axon Instruments
Axopatch 200A system.

E. Beading the AFM probes
1 drop of either polystyrene 10µm beads (Polysciences) or Sil-

ica 60µm beads (Microspheres-Nanospheres) was deposited on a
microscope slide (Fisherbrand). The beads were dried and sepa-
rated by using pressurized Nitrogen gas. Another adjacent slide was
coated with E-30CL, a 2-part epoxy (Loctite). The tip was low-
ered to coat the underside of the cantilever with glue, then moved
over to the adjacent slide to adhere the bead to the glue. Con-
stant observation using an inverted optical microscope makes this
a routine process with a high yield. For lateral AFM measurements,
a 60µm and 10µm bead were glued on top of each other such
that the 10µm bead contacted the axons. The 60µm bead served
to increase the lever arm, reducing the cantilever torsional stiff-
ness to 0.09N/m and to allow the measurement of the torsional
deflection sensitivity. The torsional stiffness sensitivity was cali-
brated by laterally deflecting the cantilever on a cleaved GaAs surface
glued to the surface such that the contacted surface was 90○ to the
horizontal.23

F. Data acquisition and analysis
F-actin data was acquired using Northern Eclipse imaging soft-

ware and a QImaging Retiga EXi camera, taking images every 4-30s.
Exposure time was 1s and gain 60% using a custom macro in the
Full Control setting. The neurites were manually kept in focus for
the duration of the experiment. The image stack was analyzed by
drawing a line on top of the neurite and using the ImageJ Multi
Kymograph plug-in v3.0.1. This produced a kymograph, which is
constructed from one intensity line profile of a stack of images.

It is an image of position as a function of time, allowing the measure-
ment of the speeds of F-actin polymers in the neurite as a function
of time elapsed since pulling. These were analyzed by hand by trac-
ing 15-30 actin trajectories per kymograph (each kymograph was
generated from one neurite). All fits were done in MatLab using
lsqcurvefit to obtain the variable values and nlparci to obtain an
uncertainty. Data from multiple experiments was presented as mean
± SD. Each trajectory also gave a starting position and ending posi-
tion which was converted to a starting position of actin in neurite
and total movement of actin. AFM initiation curves were acquired
by performing a force distance curve at 0.5µm/s using IgorPro on the
Asylum MFP3D AFM system. Data acquisition rate was 1kHz, with
most of the approximately 16µm dynamic range of the piezo being
used. Subsequent pulls were done in the z-direction in the same
way or by pulling parallel to the dish surface (in the y-direction),
allowing pulls up to 50µm. Pulls in the y-direction were performed
using a function generator (Stanford Research Systems DS 345) by
inputting a sawtooth signal into the piezo through the MFP3D Con-
troller and pulling at 0.5µm/s. The cantilever signal was acquired
at 10kHz acquisition rate through MatLab which was connected
to a National Instruments data acquisition card with 4096 pixel
resolution.

III. RESULTS AND DISCUSSION
A. Building a neural network from neurons

A simple artificial neural network for image recognition of the
hand-written numbers 0-9 consists of 16x16 inputs,24 2 deep layers
of 15 neurons each and 10 outputs.8 The same configuration of neu-
rons was then chosen as shown in Figure 2 to get an estimate of how
long it would take to build a neuronal network from neurons. In a
perceptron, every neuron from a previous layer is connected to every
neuron from the next layer. This means that the total manipulation
distance for the setup proposed would be given by:

d = s∑
i,j,k

√
(n + 1 − i)2 + ( j − k − 1)2 + s∑

j,k

√
1 + ( j − k)2

+ s∑
j,k

√
1 + ( j − k − 2)2 (1)

Where the variable i represents the indices for the rows, j and k
represent the indices for subsequent layers of columns in Figure 2
and n is the total number of rows in the first layer. The first term
in equation (1) corresponds to the total amount of neurite needed
to be manipulated to connect every neuron from the layer of input
neurons to the first deep layer of neurons. Similarly, the second and
third terms in the equation correspond to the two remaining lay-
ers being connected. The reason we sum over i, j and k in the first
term, but only j and k in the second terms is that the first layer
of input neurons has multiple rows (n rows) whereas the others
only have one row. On a high-density multi-electrode array, sepa-
rating the neurons by s=30 µm would allow recording from each
neuron. This means that the total manipulation distance for the req-
uisite 4215 connections is 1.288 meters. In the following we will
investigate if this is theoretically feasible using mechanical pulling of
neurons.

From a bio-engineering perspective, there is no reason to
choose this task and neural network over another. However, the

AIP Advances 9, 075009 (2019); doi: 10.1063/1.5086873 9, 075009-3

© Author(s) 2019

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

FIG. 2. Multilayer Perceptron: Each neuron from the 16x16 block of input neurons
will connect with each neuron from the first deep layer of 15 neurons. This is true
for all adjacent layers (i.e. all neurons in one layer are connected to all neurons in
the next layer).

identification of hand-written digits has been extensively studied
in the machine learning community, and deep learning techniques
have been very successful at performing this task. This has led to it
being called “the drosophila of machine learning” by Geoffrey Hin-
ton,5 so it makes a simple, but good candidate for making an artificial
neural network from a biological one. We do not intend on building
this network ourselves but would simply like to show that it is pos-
sible to build a neural network from neurons which can solve a real
task.

B. Force requirements
In order to wire a neural network, the manipulation method

must be able to exert a large enough force to initiate and extend the
neurites. Using an atomic force microscope to measure mechanical
properties,25 we found that the force required to initiate and extend a
neurite varies significantly. To initiate a neurite, the maximum force
was 1.1±0.7nN (Figure 3a) and to continue extending the neurite,
the average force was 1.1±0.8nN (Figure 3b) for 5 different exper-
iments at pulling speed 0.5µm/s. The large variability in the force
needed is likely due to the variation in number of neurites being
pulled. For these experiments, we often initiated neurites from bun-
dles of neurons, possibly initiating the pulling of several neurites.
The values quoted above are thus the maximum forces needed to ini-
tiate pulling of single neurites because the maximum force to initiate
and pull one neurite will be less than or equal to the force obtained
when pulling multiple neurites.

During the initiation of a neurite, the force does not simply
increase with stretch as in Hooke’s law.26 The force initially increases
very quickly, followed by a decrease in force, then finally after
much more extension, the force begins to increase gradually again.
According to both Powers et al.,27 and Derenyi et al.,28 the bead ini-
tially pulls out a portion of the axon into a catenoid as shown in
Figure 4. However, the boundary conditions of a catenoid are only
stable when the neurite is below a specific length such that the neu-
rite starts to collapse into a thin tube beyond this length and the
force decreases.27,28 As the pull continues, the tube starts to stretch,
and the force increases again.29 Over the first 10µm,30 this increase
is approximately linear, but is clearly viscoelastic on longer length
scales (Figure 3b). The simplest model that exhibits both viscous and
elastic behavior is the Maxwell viscoelastic body and consists of a
dashpot with viscosity µ and a spring with stiffness constant k. The
force F as a function of extension x for a neurite being pulled at a
constant velocity v is then:31,32

F(x) = µv(1 − e− k
µv x) (2)

The spring constant and viscosity obtained from fits as in Figure 3b
from 5 different neurites is 56±35µN/m and 2.8±2.2mNs/m respec-
tively. The significant variation in these values is again likely due to
the variation of the number or diameter of neurites initiated.

FIG. 3. (a) Initiation of Neurites from 5
different experiments (maximum forces
are F=1.98nN, 1.60nN, 0.81nN, 0.85nN,
0.24nN). (b) Following initiation, the neu-
rite is elongated, and the force is fit with
a Maxwell viscoelastic model.
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FIG. 4. The neurite is initially a catenoid until the boundary conditions become
unstable, and it collapses into a tube. The tube stretches with elongation but
maintains the same approximately cylindrical shape.

C. Pulling speeds
Using our micromanipulation technique, we can pull at a

remarkably fast 0.5µm/s to wire any two neurons together. Previ-
ous work has been done to show that the neurite is functional after
24 hours. The neurite contains actin, tubulin and neurofilament and
it has been shown to be electrically connected to another neuron.18

As far as we can determine, these ‘pulled’ neurons are structurally
and functionally not distinguishable from naturally grown ones. An
intriguing question is why is it possible to pull so fast? Is the neu-
rite growing at this speed or is the plasma membrane stretched and
the neurite subsequently filled with cytoskeletal elements? These
are biologically interesting questions that are important to under-
stand the limits to how fast we can build a complex neuronal
network.

To answer this question, we fluorescently labelled F-actin, an
important cytoskeletal element, and used it as a proxy for growth
leading to biologically relevant structure and functionality. After
stretching/extending the neurite hundreds of micrometers at 0.1-
0.5µm/s, the neurite is held at a constant length, and the maturation
of the neurite can be observed. Immediately after stopping the exten-
sion, actin appears to be pulled into the neurite. This can be seen in
the kymograph in Figure 5a.

As in section III B, we can model the actin in the neurite as
a Maxwell material, but this time with many Maxwell elements in
series32 (the exact details for the model are given in section III E). We
thus derived the position of the ith element of F-actin cytoskeleton in
the neurite as a function of time to be:

di(t) = A(1 − e− t
τ ) (3)

Where A is the displacement of the actin and τ is the characteristic
time it takes for the actin to arrive to its final position in the neurite.
We fit equation (3) to the data in Figure 5b, and we see that the char-
acteristic time τ is a constant independent of the actin position in the
neurite (Figure 5c). Since τ is a constant throughout the neurite, we
can use the average τ to determine the growth rate of the whole neu-
rite. The average τ for all the actin movement in a neurite, measured
in 7 different experiments, is 15.5±9min. Using actin cytoskeleton
as a proxy for growth, where the growth is assumed to be finished
after t = 3τ (when the distance the actin travelled is 95% of the total
distance the actin will travel), these values translate to an effective

growth rate of 0.048±0.02µm/s. This is calculated by dividing the
total length of the neurite by 3τ plus the pull time. The maximum
growth rate achieved without neurite thinning and breaking for Fass
et al.,14 was 0.055µm/s, indicating that the actual biological growth
speed in our experiments is similar to the growth rates seen by oth-
ers.14 In their experiments however, they were not able to pull faster
without the neurite breaking.

There are two main differences between the initiation of neu-
rites in our experiments and those by others.11–14 The first is that
we initiate the neurites de novo from axons whereas normally neu-
rites are initiated de novo from the cell body. The second is that our
axon forms a pre-synapse with the bead before initiation whereas
we do not believe that is the case in other experiments. We believe
that others initiate neurites using simple adhesion because they all
initiate their neurites from the cell body, whereas pre-synapses are
formed on axons. In addition to this, it takes at least 30 minutes to
form a synapse with a PDL-coated bead.16 Bray left the polylysine
coated pipette in contact only “10 minutes or so”,10 Heidemann’s
group initiate neurites immediately after coming in contact with
the cell,11–13 and the Integrin-coated beads added to the cells by
Fass et al.,14 were added once the neurons were in the manipula-
tion setup, meaning they were not in contact long before the neu-
rites were initiated (the exact time was not specified).14 Heidemann’s
group also frequently pulls the growth cone of already formed axons,
however, the fact that the axon is adhered to the surface slows the
growth rate down because the adhesion increases its viscosity.33 In
our experiments, the neurite is always suspended in the solution, so
we do not have this issue. It is possible that, in our experiments, the
presence of an already formed axon adjacent to the neurite with a
strong connection in the form of a synapse is better able to provide
cytoskeleton and plasma membrane than a cell nucleus on its own,
allowing for quicker pulling and the generation of a ‘guiding struc-
ture’ which later fills with the cytoskeletal components present in all
axons.

D. Network robustness
Once the neural network has been trained using images pro-

vided openly in the NIST database,24 we would be able to deter-
mine the contribution of each neuron and its connections to the
success of the network. To test this experimentally, we could sever
individual axons (axotomy) and then reconnect them. In Figure 6,
we axotomized an axon using an atomic force microscope (AFM)
cantilever, then used a PDL-coated bead glued to another AFM can-
tilever to micromanipulate one axotomized end into contact with
the other. Subsequent experiments were encouraging but incon-
clusive as to whether the two axotomized ends fused. The newly
grown neurites did show transport in both the proximal and dis-
tal ends, but it is unclear whether there is transport across the
reconnection.

In further experiments designed to see if fusion between the two
axotomized ends of the axon can occur simply by pressing the two
ends together, we used patch clamp to input a membrane imper-
meable dye into the nucleus following axotomy and reconnection.
In one experiment, the dye was found in the distal end of the neu-
rite. This appears to show fusion, but we only observed it once.
There are a few reasons why fusion may not be observed: the axon
forms a synapse with the bead (so wouldn’t fuse with the distal part
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FIG. 5. Movement of actin in the neurite after extension: (a) Kymograph of the actin starting 9.5min after extending neurite. The bead is at the top of the image, and the
neurite extends straight down as in the drawing on the left. (b) Traces of actin from the kymograph in (a) with equation (4) fit to the data. (c) The characteristic time τ, a fit
parameter in equation (4), is independent of the starting position of actin in the neurite. The characteristic time is equal to the spring constant divided by the viscosity of the
neurite. (d) The total movement of actin has an inverse linear dependence on the starting position of actin in the neurite.

of the axon), the cell would sometimes undergo Wallerian degen-
eration following axotomy, finding the correct nucleus to patch to
experimentally demonstrate successful fusion was difficult as there
were many axons taking similar paths, and it is possible that the
fusion does not occur every time. The fact that we did not observe
routine fusion following axotomy is unsurprising due to the above

mentioned challenges. Furthermore, it has also not been observed
in mammalian axons to our knowledge (except by using methods
which break down the membrane structure).34 It has been observed
to occur by axonal regeneration in C. elegans, crayfish, earthworm
and leech.35 Irrespective of whether the proximal and distal ends of
the severed neuron can fuse using our micromanipulation technique
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FIG. 6. Axotomy and Reconnection. (a) A single healthy axon is cut along the dash line using a sharp cantilever. (b) Axon following axotomy. (c) A PDL-coated bead glued
to bottom of cantilever (large black object) forms a synapse with proximal end of the axotomized axon. (d) Force applied by cantilever and bead on axon generates a new
neurite. (e) Neurite reconnects the axon’s proximal and distal ends. The axon appears to be reconnected and has transport in the proximal end, but not definitively in the
distal end.

and by pressing the two ends together, it has been routinely shown
that the two ends can be fused by using a technique called micro-
electrofusion.34,36 This method works by dissolving the membrane
using high electric pulses such that the membrane fuses into a sin-
gle tube when it re-solidifies. We have showed here that by using
microelectrofusion and our micromanipulation technique, we can
systematically study the role of individual connections in the neural
network.

E. Model of the mechanical properties of the neurite
In sections III B and III C, we used a Maxwell viscoelastic model

(Figure 7b) to fit force data and actin movement data respectively.
In the constant velocity extension curves in Figure 3b, the force
increases, indicating stretch. This provides the motivation for the
elastic component in the Maxwell model. The viscous component
allows viscous flow to relax the spring, shown by the force plateau in
Figure 3b. Solving for the force as a function of extension at constant
speed gives equation (2) which was used to fit the data in Figure 3b.
Since the neurite is well modeled as a spring and dashpot in series,
it seems reasonable to model the transport of actin along the length
of the neurite similarly. One spring and dashpot in series is mathe-
matically equivalent to many connected smaller Maxwell elements.
Since we are examining the actin movement throughout the length
of the neurite, we propose a viscoelastic model consisting of many
Maxwell elements in series32 and derive the displacement of each
element as a function of time (the model in Figure 7a shows only
the springs to make the visualization of each spring’s displacement
easier to follow).

The flow of actin into the neurite occurs after the neurite is
extended and the springs are stretched out (Figure 7a). The ten-
sion from the stretching pulls more material into the neurite by
overcoming the viscous resistance, relieving tension and effectively
elongating the neurite. Each spring in the neurite will feel the same
force and will be stretched equally because the springs are arranged
in series. In Figures 7a and 5c, we see that the total displacement di
of the proximal springs (those closest to the axon-neurite junction)
will be much larger than the displacement of the distal springs (those
closest to the bead). This is because the full displacement of the ith

FIG. 7. Physical model of the neurite during extension: (a) When modelling the
neurite as many springs (and dashpots, not shown) in series, we can predict where
each spring will be relative to each other in the neurite by calculating di as a
function of di−1. (b) Maxwell viscoelastic body: the movement of the actin in time
cannot be instantaneous because there is viscous flow. We model this by putting
a dashpot in series with each spring in the neurite.
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spring is equal to the total amount of stretch of all the springs in
front of it:

di(t) = i
N
x − ixi(t) (4)

Here, N is the total number of springs in the neurite, x is the total
amount of initial stretch in the neurite, and xi is the instantaneous
stretch in each spring. Each elastic spring element is accompanied by
a viscous element (modelled by a dashpot) to represent the resistance
of the neurite to flow. Each spring and dashpot will experience the
same amount of force, so that we can write the force applied on each
element in the neurite as:

Fi = ksxi = µd(ḋi − ḋi−1) (5)

We have assumed that the spring constant ks and the viscosity µd
of all constituents are the same, which agrees with the linear trend
in Figure 5d. Combining equations (4) and (5), and solving the
resultant differential equation gives:

di(t) = ix
N
(1 − e−

ks
µd

t) (6)

Which describes the displacement of the ith element of the neu-
rite as a function of time. Equation (3) is the same as equation (3),
only we have now defined A = ix/N and τ = µd/ks. As noted in sec-
tion III C, the characteristic time τ = µd/ks is a constant independent
of the actin position in the neurite (Figure 5c). This indicates that
the tension is distributed equally throughout the neurite, allowing
all constituents to relax together, and providing evidence there is
a similar composition along the length of the neurite. The neurite
displays a remarkable ability to stretch itself, with the actin pulled
mechanically into the neurite.

Equation (6) also indicates that the total movement of actin in
the neurite should be smaller for actin that starts distally and that
this should have a linear dependence. This is what we observe in
Figure 5d. The deviation of this line from the y = −x line is the total
length of springs in the neurite measured in equilibrium, L = Nl,
where l is the length of one unstretched spring. In terms of variables
defined in the model, Figure 5d is a plot of ixi + L vs (i/N)x. As we
would expect, neurites which were pulled a longer distance had both
a longer length L and initial stretch x (data not shown).

The model describes all aspects of the data, providing evidence
that the flow of actin is mechanically driven by the force applied
to the neurite. The neurite does not grow at the pulling rate set by
the user, but instead stretches, and later fills in with a characteristic
time which depends on the spring constant and the viscous resis-
tance. When compared to other mechanically induced growth in
neurites, the effective growth rate of these neurites is similar. How-
ever, because we are able to pull much faster, this allows the pos-
sibility to wire a complex neural network in a comparatively small
amount of time.

F. Optimal manipulation
With our micromanipulation technique, we can pull at

0.5µm/s, meaning it would take 30 days of pulling time to wire the
proposed multilayer perceptron network’s 1.288 meters total length.
This is prohibitively slow: The cells will die well before the 30 days
of manipulations are complete, as the manipulation is not performed
in an incubator with optimal conditions for neuron survival. A more

realistic maximum time for completing these manipulations before
the cells die is empirically about 24 hours; an effective speed up of
about 30 times is thus necessary. The only solution to reduce the
manipulation time by this much would be to pull multiple beads
simultaneously.

The necessary criteria for wiring an arbitrary neural network
are:

1. The setup must keep cells alive for many hours.
2. It must be possible to manipulate in all 3 dimensions.
3. Most importantly, as described in section III B, the method

must be able to exert a large enough force to initiate and extend
the neurites.

There are many techniques for manipulating microspheres in a
dish. Optical tweezers can be multiplexed, but the trap force maxi-
mum is generally about 100pN and the laser can cause photodam-
age and heat the sample significantly, both leading to cell death.37

Acoustic force spectroscopy and centrifugal force spectroscopy both
lack multidimensional motion.38,39 An atomic force microscope can-
tilever array has many positives, but it cannot effectively release the
beads as these are usually glued to the end of the cantilevers.40 By
making a hole in the bottom of the cantilevers, it could be possible to
use suction to pick up the beads, but this method still lacks indepen-
dent control over each bead.41 Magnetic traps have been multiplexed
by positioning a magnet far away from the beads, such that all beads
feel the same field. However, the multiplexing abilities mean that the
magnets are positioned quite far away such that the maximum force
is 260pN, and in most systems significantly less.42,43 The multiplexed
traps also lack independent control as they exert the same force on
all beads.

The best option seems to be to use 2-3 magnetic pole pieces
similarly to Fass et al.,14. Since the pole pieces are mounted on a
micromanipulator, each pole piece would give control over another
dimension, the pole pieces can be brought into proximity with the
magnetic bead of choice (allowing a large range of force control and
bead selectivity) and this method does not kill the cells. Using an
electromagnet, the force dependence on distance is a power law44

which allows manipulating specific beads based on proximity to the
pole pieces. Also, the force depends linearly on the current flow-
ing through the solenoid44 allowing quick adjustments to the force
applied. Using a 4.5µm bead, and by varying the distance and the
current, it is possible to apply forces that range from 15pN up to
many nanonewtons.14

This method could be multiplexed by picking up each bead in
a column (see Figure 2) in one pass, such that many beads will all
be pulled together. An appropriate field gradient could be one where
a bead 14µm away would feel a force of around 1nN, sufficient to
initiate and extend a neurite. Using this field, a bead on an adjacent
axon another 30µm away (and thus a total of 44µm away), would
feel only 0.1nN force, so it would not be initiated. For reference, a
bead 10, 20, 30, 40 and 50µm away from the pole piece would feel a
force of 2.0, 0.5, 0.22, 0.12 and 0.078nN respectively. In the situation
where a bead on an adjacent axon was for example only 20µm away,
it could be inadvertently initiated. This should be avoidable though
because each bead is placed on the axon by the user and the multi-
electrode arrays are separated by 30µm (although some optimization
might be necessary here). Using these parameters, many beads could
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be picked up sequentially and connected to their common destina-
tions simultaneously. Each pass would thus connect one column of
16 neurons in the first layer to every neuron in the entire row of 15
neurons in the next layer.

Since the input neurons form a 16x16 square of neurons, each
column of this square could be pulled at one time simply by pick-
ing up a bead and moving on to the next row of neurons to pick up
the next bead and initiate another neurite. To connect these newly
initiated neurites to the dendrites of the next layer’s neurons, the
neurites could be connected by wedging them under a non-magnetic
bead sitting on the target neuron’s dendrites. In this way, the col-
umn of neurons will have their neurites connected to each neuron’s
dendrites in the next layer’s row in one single pass. This would
reduce the amount of pulling time from about 42 days in sequen-
tial pulling, as calculated at the beginning of this section, to about
10.3 hours. Of course, for this to work, 296 beads would have to
be precisely placed on the axons and dendrites throughout the dish.
Placing a bead takes about 1 minute, so this would add about 5 more
hours. Adding another hour for the user to operate the setup and
make decisions in real time implies that it should be possible to wire
the entire circuit in only 17 hours. Based on these considerations,
using multiple magnetic pole pieces to connect this circuit seems
feasible.

G. A learning biological neural network
Once the neural network has been successfully wired, the con-

nections will be initially firing randomly, and will not be able to
process a hand-written digit. In an artificial neural network, teach-
ing a neural network to recognize a digit is done through a method
called backpropagation. Each input neuron receives a pixel value
from 0 to 1 from the initial 16x16 image, and the signal is passed
through the layers to the output layer. As the signal passes from
one layer to the next, the activation energy (neuron initial value),
the weight (factor multiplied with the activation energy) and the
bias (offset added at the end) will be scaled to determine what
value between 0 and 1 the next neuron will take.8 Teaching the
network adjusts those three variables for every connection in the
network appropriately to maximize the chance of outputting the
correct number. Backpropagation works by calculating the cost
function (the sum of the difference between the output and the
input), and figures out what values of activation energies, weights
and biases will give the correct value. This is done by minimiz-
ing the gradient of the cost function on a large set of training
data.

In a biological neural network, Hebbian theory says that neu-
rons can adjust the strength of their connections by increasing the
number of synaptic connections or by changing the nature of their
synapse (e.g. by increasing synaptic vesicle exocytosis) in a process
called long-term potentiation.45,46 Long-term potentiation is analo-
gous to increasing the weight of a connection in an artificial neu-
ral network. Pre- and post-synaptic neurons depolarizing together
during a high frequency stimulation can cause long-term potentia-
tion.4 Certain pathways may be inadvertently strengthened, but with
the multi-electrode array, those pathways can be discouraged by
hyperpolarizing select cells, preventing them from being strength-
ened. Bienenstock, Cooper and Munro (BCM) developed a theory
which builds on Hebbian theory and says that when a pre-synaptic

neuron is stimulated, but the post-synaptic activity is below a certain
threshold, long-term depression will occur.47 Long-term depression
is the functional opposite of long-term potentiation and is analogous
to decreasing the weight of specific connections. By inducing either
long-term potentiation or depression, specific connections can be
either encouraged or discouraged.4,48,49 Synaptic plasticity can be
induced using other methods such as: the pairing of depotentia-
tion in pre- and post-synaptic neurons,50 using naturally occurring
firing patterns to induce LTP,51 or by using N-methyl-D-aspartate
to induce LDP.49 Non-synaptic forms of plasticity which affect all
the synapses in a cell52 or membrane geometric properties53 also
exist.

A significant difference between a neuron and a computer
is that a neuron will only fire if it reaches a threshold polariza-
tion, and its strength of polarization is always the same, which
means that the analog of activation energy in an artificial neural
network is not the same as changing the strength of the action
potential in a biological neural network. Instead, information is
encoded through stimulation pulses.54 We could make high fre-
quency pulses in a biological neural network analogous to higher
activation energies in an artificial neural network. The pixel val-
ues that were encoded in the artificial neural network with a value
between 0 and 1 could instead be encoded using higher and lower
frequency inputs. Since the multi-electrode array allows both the
stimulation and recording of action potentials of all the neurons
in the dish, the entire network could be analyzed with the gra-
dient of the cost function as in an artificial neural network. By
systematically changing the long-term potentiation and depression
of specific connections, the network could then be trained using
backpropagation.

Assuming an artificial neural network with the exact topogra-
phy described in section III A is successfully built, there will still
be a number of challenges in the actual training of the neural net-
work and the interpretation of its outputs. These are challenges
present in any artificial neural network, but with the added com-
plexity that the network is slower to train, the activation energy here
is encoded as a frequency and the neuron may compute information
in a fundamentally different way.

The biggest challenge would be if the biological neural net-
work is unable to learn at all and the error rate on the training
dataset never decreases significantly (underfitting). The strength of
the connections between neurons are altered by inducing physiolog-
ical changes to each connection, meaning that the neurons will take
much longer to train than an artificial neural network. This means
that it may not be possible to do more than 1 epoch (i.e. one pass
through the entire training dataset, which for the MNIST dataset is
60000 hand-written digits), and hence the data will be underfit.5 To
compensate for this limitation, it may be more efficient to increase
the number of training examples between each change to connection
strengths. Another reason the network is underfitting could be due
to fundamentally different computational methods between an arti-
ficial neural network and a biological one (e.g. because the frequency
of the signal may not encode the activation energies properly). We
know there are differences in how the two networks compute, and
this may necessitate a different approach for training the network.
Rather than specifying the exact algorithm for computing to the net-
work, letting it figure out how to best process the information itself
might give insights into how a biological neural network naturally
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computes. However, this will be difficult as we do not yet have a
clear idea of how the network computes, so it will be difficult to
know how to train the network (i.e. what behavior to encourage or
discourage).

The opposite scenario where the network performs well on
training data but does not perform well on test data is called overfit-
ting. In this case, the capacity of the network will need to be reduced.
In an artificial neural network, one way this is done is by using dif-
ferent types of non-linear functions for calculating the activation
energies.5 However, for a biological neural network, the neuron fires
if depolarized below a certain threshold and this is intrinsic to the
neuron, so it is not possible to change this. Instead, other techniques
for reducing the capacity of the network should be employed, such
as reducing the number of neurons in the deep layers or reducing
the number of epochs. Following these adjustments, if the network
can successfully classify the hand-written digits from the test dataset
(10000 digits), then we can be satisfied that the network has truly
learned how to perform a complex task. We believe that the pro-
cess of getting to this point will be important in understanding the
difference between the biological neural network and the artificial
one.

IV. CONCLUSION

We believe that building an artificial neural network from bio-
logical neurons will help to understand what is fundamentally differ-
ent between a brain and a machine. We propose a method to train
the network by using backpropagation, which is used on artificial
neural networks, by systematically changing the weight of the con-
nections between neurons and by using frequencies to encode what
would normally be entered as the activation energies of an artifi-
cial neural network. We propose using a multi-electrode array, to
record all action potentials and stimulate any neuron, which would
allow us to measure and systematically change any of the weights
of the connections between neurons, capabilities which are not cur-
rently available for any complex network. The bioengineering feat
of wiring all the connections into a complex biological neural can
be done by using our micromanipulation technique which can pull
300 times faster than average natural growth. We have shown that
the maximum forces required to initiate and elongate these neurites
is within the capabilities of a magnetic trap. We have developed a
model which describes the remarkable mechanically induced growth
in the neurite. Furthermore, we have shown that it could be possi-
ble to test the robustness of this network by axotomizing specific
axons and then reconnecting them. We believe that all the neces-
sary knowledge and technology is available to build and teach an
artificial neural network from biological neurons which will allow
new insights into computation and learning in both machines and
in brains.
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