

Recent Developments in The Physics of Neutron Stars

Madappa Prakash &PALS

SUNY at Stony Brook, Stony Brook, NY

Subal-Fest

 $\text{Dec } 4$, 2004, Montreal 1/18

PALS

Physics & Astrophysics of Neutron Stars

- **In Algebrary Cores of neutron stars may contain hyperons, Bose condensates, or** quarks (*Exotica*)
- **►** *Can* observations of M, R & B.E (composition & structure) & P, \dot{P} , T^S & B etc., (evolution) reveal *Exotica* ?
- Neutron stars implicated in x-ray $\& \gamma$ -ray bursters, mergers with black holes, etc.
- ^I *Observational Programs* :

SK, SNO, LVD's, AMANDA ... $(\nu's)$ HST, CHANDRA, XMM, ASTROE ... $(\gamma's)$ LIGO, VIRGO, GEO600, TAMA ... (Gravity Waves)

Connections to Nuclear Physics

- \blacktriangleright Theory : Many-body theory of strongly interacting systems, Dynamical response (ν - & γ - propagation & emissivities)
- \triangleright Experiment : e^- and ν scattering experiments on nuclei, masses of neutron-rich nuclei, heavy-ion reactions, etc.

Neutrino Luminosities

Total Luminosity (10⁵¹ erg/s)

- Early detectors lacked sensitivity to test if SN 1987A ended up as ^a black hole
- Current & future detectors can do better in the case of a future event

Mass Radius Relationship

Measured Neutron Star Masses

- \blacktriangleright Mean & weighted means in M_{\odot}
- \blacktriangleright X-ray binaries: 1.53 & 1.48
- \blacktriangleright Double NS binaries: 1.34 & 1.41
- \triangleright WD & NS binaries: 1.58 & 1.34

Moment of inertia (I**) measurements**

Spin precession periods:

$$
P_{p,i} = \frac{2c^2aPM(1 - e^2)}{GM_{-i}(4M_i + 3M_{-i})}
$$

Spin-orbit coupling causes ^a periodic departure from the expected time-of-arrival of pulses from pulsar A of amplitude

$$
\delta t_A = \frac{M_B}{M} \frac{a}{c} \delta_i \cos i = \frac{a}{c} \frac{I_A}{M_A a^2} \frac{P}{P_A} \sin \theta_A \cos i
$$

P: Orbital period a: Orbital separation e: Eccentricity $M=M_1+M_2\mathrm{:}\ \ \text{Total mass}$ *i*: Orbital inclination angle θ_A : Angle between S_A and L. I_A : Moment of Inertia of A For PSR 0707-3039, $\delta t_A \simeq (0.17 \pm 0.16) I_{A,80}$ $\mu\mathrm{s}$; Needs improved technology & is being pursued.

Limits on R **from** M **&** I **measurements**

- \blacktriangleright 10% error bands on I in M_{\odot} km²
- Horizontal error bar for $M = 1.34$ M_{\odot} & $I = 80 \pm 8$ M_{\odot} km²

Ultimate Energy Density of Cold Matter

Inferred Surface Temperatures

New Cold Objects

Several cases fall below the "Minimal Cooling" paradigm & point to enhanced cooling, if these objects correspond to neutron stars.

The Binary Merger Experience

- $\blacktriangleright\ M_1\leq M_2$
- \blacktriangleright radial separation: $a(t)$
- $\blacktriangleright M_1$ NS or SQM
- $\blacktriangleright M_2$ BH, NS, ...

 \triangleright GW emission \Rightarrow

$$
L_{GW} = \frac{1}{5} \frac{G}{c^5} \langle \ddot{F}_{jk} \ddot{F}_{jk} \rangle
$$

$$
= \frac{32}{5} \frac{G^4}{c^5} \frac{M^3 \mu^2}{a^6}
$$

orbit shrinks Mass transfer

To merge or not to merge?

Roche Lobe Overflow

Energy Loss

$$
L_{GW} = \frac{1}{5} \langle \ddot{F}_{jk} \ddot{F}_{jk} \rangle = \frac{32}{5} a^4 \mu^2 \omega^6
$$

IMEDIARY Angular Momentum Loss

$$
\left(\dot{J}_{GW}\right)_i = \frac{2}{5}\epsilon_{ijk}\langle\ddot{F}_{jm}\ddot{F}_{km}\rangle = \frac{32}{5}a^4\mu^2\omega^5
$$

 \blacktriangleright a(t) and V_{Roche} shrink!

- $R_1 = r_{Roche}$
	- \Rightarrow Mass transfer begins!

Equation of State: ^α(M)

Evolution: Normal Star (AP R **)**

 $M = 4M_{\odot}$, $q_{ini} = 1/3$

- GR speeds up evolution
- \blacktriangleright a(t) increases after "touchdown"
- \blacktriangleright $\omega(t)$ stabilizes at long times
- Little variation among EOS's of normal stars.

 \blacktriangleright

 M_1 approaches the NS minimum mass; subsequen^t plunge (timescale \sim a few minutes) yields a second spik e in the GW signal!

Evolution: SQM **Star**

Main Results

- Incorporating GR into orbital dynamics leads to an evolution that is faster than the Newtonian evolution.
- Large differences exist between mergers of "normal" and "self-bound (SQM)" stars.
	- SQM stars penetrate to smaller orbital radii; stable mass transfer is more difficult than for normal stars.
	- For stable mass transfer, $q = M_1/M_2$ and $M = M_1 + M_2$ limits on SQM stars are more restrictive than for normal stars.
	- The SQM case has exponentially decaying signal and mass, while normal star evolution is slower.

