Finite-system statistical mechanics for nucleons, hadrons and partons Scott Pratt, Michigan State University

RECURSIVE TECHNIQUES THE BACK AND FORTHS OF STATISTICAL NUCLEAR PHYSICS

<u>Collaborators</u>:

S. Das Gupta, McGill
W. Bauer, MSU
S. Cheng, UCSF
S. Petriconi, MSU
J. Ruppert, Frankfurt
M. Skoby, U.Minn.Morris

Multi-Fragmentation
 Level Densities
 Hadron Gas
 QGP

Michigan State University

Scott Pratt

The "OTHER" method for canonical ensembles

$$Z_{\rm GC}(\beta,\alpha) = \operatorname{Tr}\exp(-\beta H + \alpha Q)$$
$$Z_{\rm C}(\beta,Q) = \frac{1}{2\pi} \int d\alpha \, e^{-i\alpha Q} Z_{\rm GC}(\beta,i\alpha)$$

Can even be applied to non-additive charges: H.-T. Elze and W. Greiner, PRA(86), PLB(86)
Has been applied to QGP

Transforming Z_{GC} vs. Recursive Techinques

Old methods:

• Can be performed analytically for simple systems

Recursive techniques:

- Bose and Fermi statistics
- Arbitrary level densities
- Multiplicity distributions
- Exact (discrete, sums not integrals)

Fundamental Relation

K. Chase & A. Mekjian, PRC 1995, S.P. & S.Das Gupta, PRC 2000

• Consider Species k with mass a_k

$$Z_{A} = \sum_{\langle n_{k}a_{k}=A \rangle} \prod_{k} \frac{\varpi_{k}^{n_{k}}}{n_{k}!}$$
$$= \sum_{\langle n_{k}a_{k}=A \rangle} \prod_{k} \frac{\varpi_{k}^{n_{k}}}{n_{k}!} \frac{n_{k'}a_{k'}}{A}$$
$$= \frac{1}{A} \sum_{k} \varpi_{k} a_{k} Z_{A-a_{k}}$$

One can add other charges

$$Z_{A,\vec{Q}} = \frac{1}{A} \sum_{k} a_k \omega_k Z_{A-a_k,\vec{Q}-\vec{q}_k}$$

Scott Prat

Multifragmentation

Population of species k

$$\langle n_k \rangle = \frac{\omega_k Z_{A-a_k}}{Z_A}$$

Mass Distribution, A=250

Scott Pratt

Multiplicity distributions

Treat the number N as a "charge"

$$P_{A}(N) = \frac{Z_{A,N}}{Z_{A}} = \frac{1}{AZ_{A}} \sum_{k} \omega_{k} a_{k} Z_{A-a_{k},N-n_{k}}$$

Scott Pratt

Microcanonical ensembles

Discretize E and treat it as a "charge"

$$N_A(E) = Z_{A,E} = \frac{1}{A} \sum_k \omega_k a_k Z_{A-a_k,E-\varepsilon_k}$$

FLUCTUATIONS in IMF PRODUCTION

Microcanonical

Scott Pratt

Fermi systems

S.P., PLB 93, PRL 2001

• Previous form, $\omega^n/n!$, neglects degenerate states.

•Account for symmetrization with permutations $Z_{A} = \frac{1}{A!} \sum_{i_{1}-i_{A},P(i)} \langle i_{1}, i_{2}, \cdots i_{A} | e^{-\beta H} | P(i) \rangle (-1)^{N_{P}}$

Arrange permutations into cycles,

$$Z_{A} = \frac{1}{A} \sum_{\ell} (-1)^{\ell+1} C_{\ell} Z_{A-\ell}$$

$$C_{\ell} = \sum_{i_{1}, i_{2}} \langle i_{1}, i_{2} \cdots i_{\ell} \mid e^{-\beta H} \mid i_{\ell}, i_{1} \cdots i_{\ell-1} \rangle = \sum_{i} e^{-\ell \beta E_{i}}$$

Example: A=9

Scott Pratt

Level densities

Using microcanonical ensemble, calculate $N_A(E)$

Angular momentum

1. Calculate $Z_{A,M}$ 2. $Z_{A,J} = Z_{A,M=J} - Z_{A,M=J+1}$ 10¹⁰

Scott Prat

Application: Rare isotope production

Incorporate: •FRLDM ground states •Excited states •Fragment into all possible partitions •Sequential decay

Scott Pratt

Hadron gas

- Same formalism
- •Conserve B, S, I, I_3 , Q
- Symmetrization for pions
- ·Isospin treated like angular momentum
- Monte Carlo particles

Hadron gas, Monte Carlo

MONTE CARLO PROCEDURE:

- 1. Pick Q=0 and A according to weight ~ Z_A
- 2. For A and Q:
 - Calculate weight(k)= $(a_k w_k / A)Z(A a_k, Q q_k)/Z(A, Q)$
 - Choose species according to weight
 - Reduce size: $A \rightarrow A a_k$, $Q \rightarrow Q q_k$
 - Repeat
- 3. Can not include Fermi/Bose statistics

Balance functions

S.P., S. Petriconi and M. Skoby, PRC 2003.

Charge conservation is local
Width determined largely by T
Accounts for "lost" charge

 $\pi^+\pi^-$ balance function

Scott Pratt

Isospin distributions: background

Random state:

$$P(N_0) = \frac{A!}{(A - N_0)! N_0!} \left(\frac{1}{3}\right)^{N_0} \left(\frac{2}{3}\right)^{A - N_0}$$

DCC state: (isosinglet in one quantum level)

$$|\eta\rangle = \frac{1}{\sqrt{N}} \left(2a_{+}^{+}a_{-}^{+} - a_{0}^{+}a_{0}^{+} \right)^{A/2} |0\rangle$$
$$P(N_{0}) = \frac{1}{2\sqrt{AN_{0}}}$$

Bose-Gas with no isospin constraints: •Broad distribution at high phase space density •Pairwise isospin conservation further broadens distribution S.P. and V.Zelevinsky, PRL 94

Scott Pratt

Isospin distributions: challenges

- Include all arrangements
- •Conserving I
- Bose Einstein statistics
- Resonances
- •Number of neutral pions, N_{o} ,
 - -- does not commute with I

Isospin distributions: solution

S.Cheng and S.P. PRC 2003

One can show (non-trivial)

$$P_{A,I,M}(N_{0}) = \frac{W_{A,I,M}(N_{0})}{Z_{A,I}}$$

$$W_{A,I,M}(N_{0}) = \frac{1}{A} \sum_{\ell} \sum_{i,I',M',m} C_{\ell}(i,m;n_{0})W_{A-\ell,I',M'}(N_{0}-n_{0})\langle I,M | i,m,I',M' \rangle^{2}$$

$$C_{\ell}(i,m;n_{0}) = \left(\sum_{i} e^{-\ell E_{i}} \sum_{\alpha} \langle \alpha(n_{0}) | P_{m}^{i} | \widetilde{\alpha}(n_{0}) \rangle\right)$$

Isospin decomposition of cycle diagram
 for pions in one quantum state
 Calculated brute force with raising/lowering operators

Isospin distributions: results π, ρ, ω gas at T=150 MeV

Random Isosinglet + symmetry + resonances

Bose effects broaden distribution
Resonances narrow distribution
Resonances win

Conserving SU(3) color

•All systems are confined to color singlets

Constraint should lower entropy

•Color multiplets are labeled (p,q)

•Singlet is (0,0), q is (1,0) anti-q is (0,1) gluon is (1,1)

Scott Pratt

Adding color multiplets

 $(1,1) \otimes (1,2) = (0,1) \oplus 2 \bullet (1,2) \oplus (2,1) \oplus (2,0) \oplus (3,1) \oplus (2,3)$

Scott Pratt

Recursion relations for gluons

$$Z(p,q) = \sum_{A} Z_{A}(p,q)$$
$$Z_{A}(p,q) = \frac{1}{A} \sum_{\ell,p_{\ell},q_{\ell},p',q'} C_{\ell}(p_{\ell},q_{\ell}) Z_{A-\ell}(p',q') \beta(p_{\ell},q_{\ell},p',q';p,q)$$

Must know Color decomposition of: $\sum_{a_1-a_\ell} \langle a_1 a_2 \cdots a_\ell | P(p,q) | a_2 a_3 \cdots a_1 \rangle$

From Young-tableaux Addition rules

Color decomposition of cycle diagram

Cycle diagram with no (p,q) projection

Color decomposition of cycle diagram

Gluons:

$$C_{\ell} = (\ell, \ell) + (\ell - 3, \ell) + (\ell, \ell - 3)$$
$$-(\ell - 2, \ell + 1) - (\ell + 1, \ell - 2) - (\ell - 2, \ell - 2)$$

Quarks:

$$C_{\ell} = (\ell, 0) - (\ell - 1, 2) + (\ell - 3, \ell - 3)$$

Scott Pratt

Calculating Z for parton gas

•Calculate Z(p,q) for gluons •Calculate $Z_A(p,q)$ for strange quarks •Convolute strange/antistrange $Z_A(p,q)$ s

 $Z(P,Q) = \sum_{A,p,q,\overline{p},\overline{q}} Z_A(p,q) Z_A(\overline{p},\overline{q}) \beta(p,q,\overline{p},\overline{q};P,Q)$

•Calculate $Z_{A,I}(p,q)$ for up/down quarks •Convolute up/down $Z_A(p,q)$ with antiup/antidown $Z_A(p,q)$ •Keep only I=0 piece of up/down/antiup/antidown Z•Convolute both quark segments •Convolute quark sector with gluon sector •Keep only (p=0,q=0) piece.

Parton gas: results

•Effects are important for V < 10 fm^3

•What are effective volumes at RHIC?

(20 fm³?)

Aside: Why are the constraints so large for systems with 50 partons?

Now, consider the SU(3) case Add A gluons (1,1)

P(p=0,q=0) ~ A⁻⁴
Entropy penalty ~ -4 log(A)
For 20 gluons:

1.153×10¹⁸ multiplets, chance of singlet = 1/122,558

Summary

- We can calculate anything "When you have a hammer, every problem looks like a nail." -K.H.
- Interactions are ignored Mean Field or 1st-order perturbation theory is easy Iterative perturbation theory? or BBGKY hierarchy?