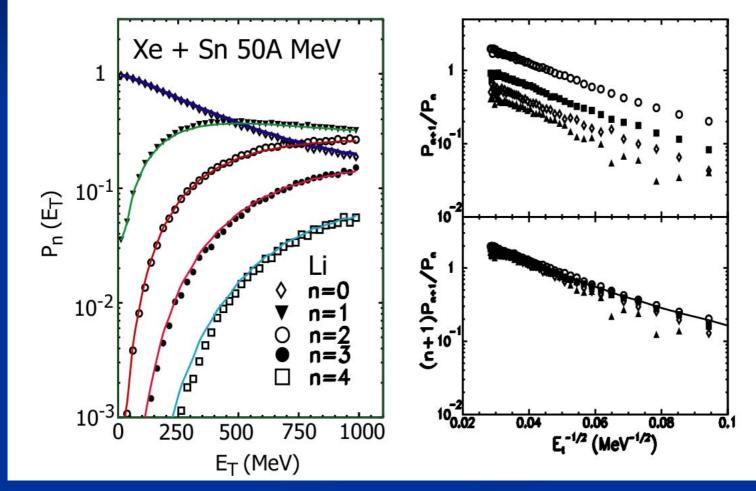
Exact Solution to the Fragment Multiplicity distributions

Lijun Shi Physics Department McGill University Dec. 4, 2004

Outline

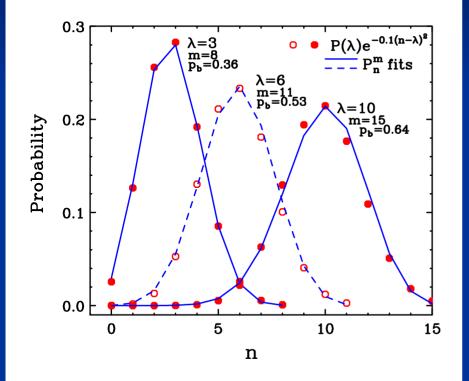
Questions raised from experiment Multiplicity distributions – poissionian or not Interpretations (independent emission, system size) Iterative formula for multiplicity distributions Iteration for partition function Blocking method for complete distributions Systematics from multiplicity distribution Single isotope and IMF System size scaling Variance – phase transition – isospin asymmetry Summary

Questions from experiments: independent emission? Simple?



L. Beaulieu, et al., Nucl-ex/9805003

Different interpretations: part 1: Poisson or binomial



M. B. Tsang and P. Danielewicz, PRL 80, 1178 (1998)

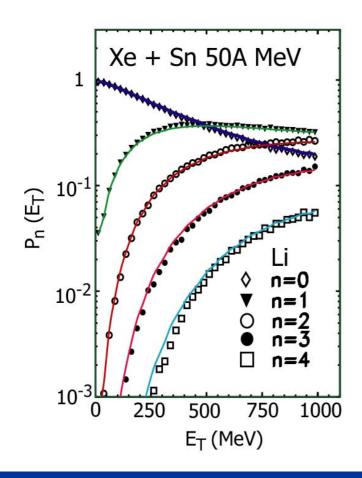
L.G. Moretto, et al.,
 => Barrier emission
 (W. Skulski, et al., multiplicity folding)

$$P_n = \frac{m!}{n!(m-n)!} p^n (1-p)^{m-n}.$$

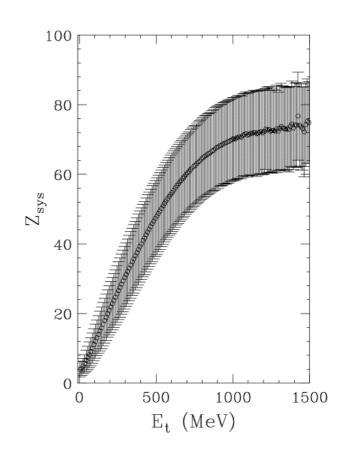
2) B. Tsang, poisson to sub-poisson because of conservation law

$$P_p(n) = \frac{\lambda^n}{n!} e^{-\lambda}$$
$$P_m(n, \alpha) = \frac{\lambda^n}{n!} e^{-\lambda} e^{-\alpha(n-\lambda)^2}$$

Different interpretations: part 2: size matters



L. Beaulieu, et al., Nucl-ex/9805003

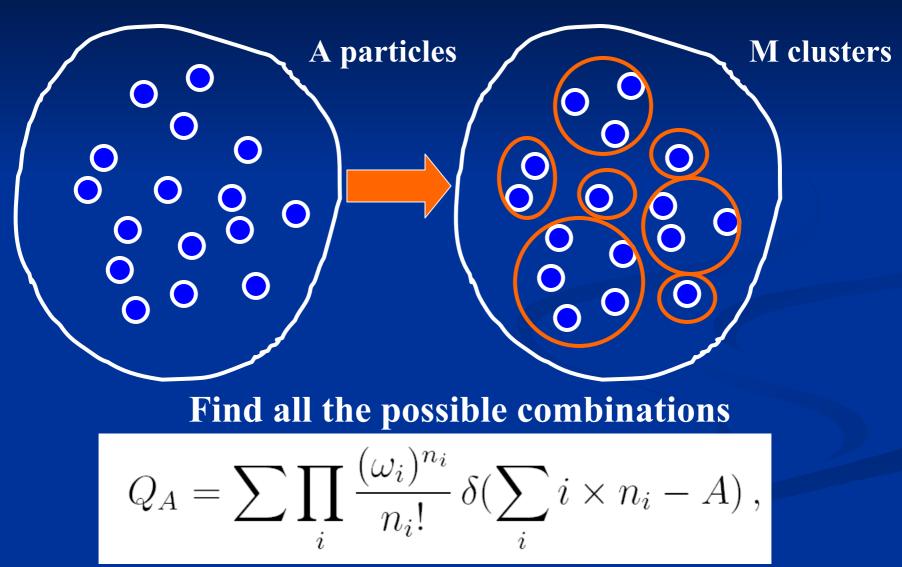


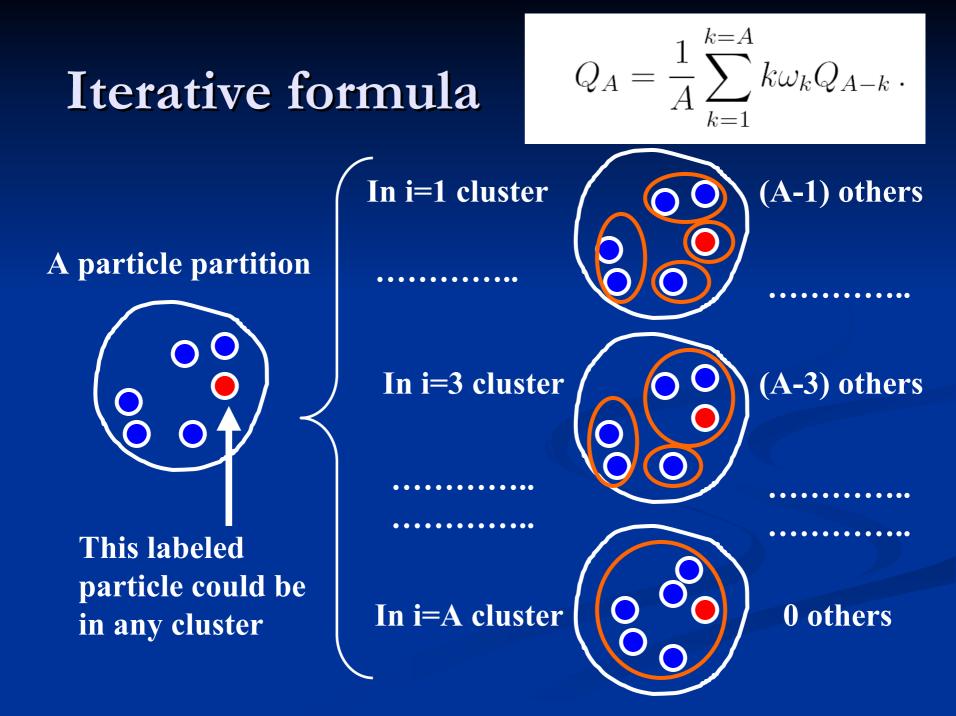
Wolfgang Bauer, Scott Pratt, Phys. Rev. C59 (1999) 2695-2698

Exact Solvable Model: iterative formula

- Canonical partition problem
 Particle number conserved
 Heat bath
 Iterative formula for partition function
 Blocking methods for multiplicity distributions
 - exact solution
- Incorporate decay and feeding effect
 exact solution

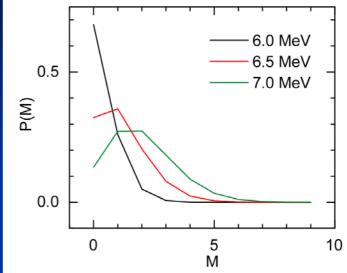
Partition Problem





multiplicity distributions

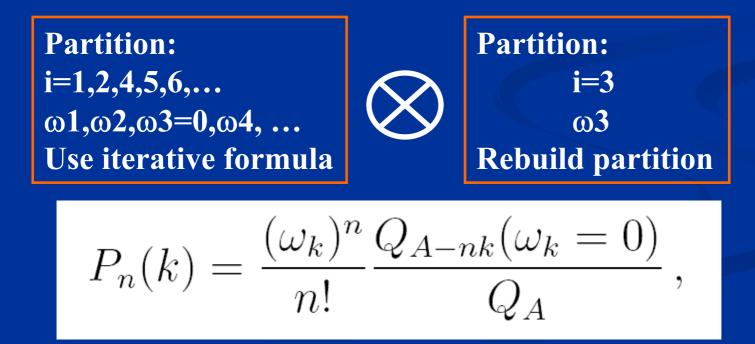
Objective: Find the multiplicity of a give cluster i, that is, the distribution of n_i.



For example, consider i=3: $P(n_3=0)$, $P(n_3=1)$, $P(n_3=2)$, $P(n_3=3)$, $P(n_3=4)$, Here the Total partition function does not help, we need to treat i=3 clusters separately, then the iterative formula does not work anymore!

$$Q_A = \sum \prod_i \frac{(\omega_i)^{n_i}}{n_i!} \,\delta(\sum_i i \times n_i - A) \,,$$

Single Blocking method Cluster size: (i=3 is special =>multiplicity distribution) i = 1, 2, 3, 4, 5, 6, Cluster formation probability: ω1, ω2, ω3, ω4, ω5, ω6, Now we have two separate partition problem



Group Blocking method Cluster size: (i=3, 4, 5=>multiplicity distribution) i = 1, 2, 3, 4, 5, 6,Cluster formation probability: $\omega 1, \omega 2, \omega 3, \omega 4, \omega 5, \omega 6,$ Now we have two separate partition problem

Partition: (group β) i=1,2,6,... ω1,ω2,ω3=0, ω4=0, ω5=0, ω6, ... Use iterative formula Partition: (group α)i=3, 4, 5ω3, ω4, ω5Rebuild partition

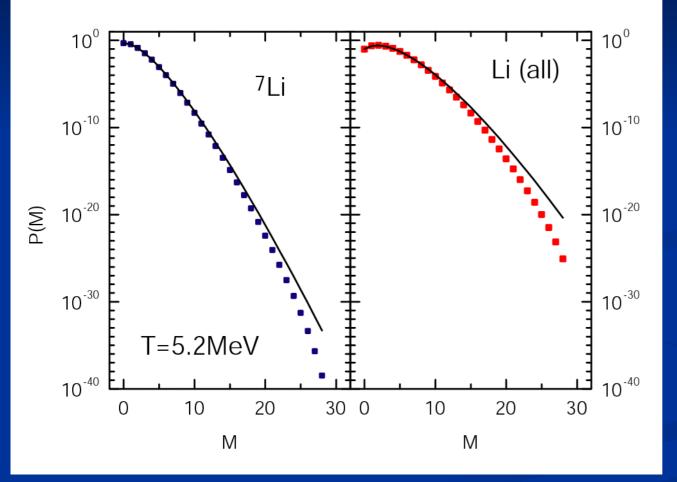
$$P(\alpha, M) = \frac{1}{Q_A} \sum_{A_1, A_2} Q_{A_1}(\alpha, M) Q_{A_2}(\beta) \delta(A_1 + A_2 - A).$$

One component system T=6 MeV, T=7 MeV Sub-poissonian Super-poissonian 10° 10° 6.0 MeV 10⁻¹⁰ 10⁻¹⁰ 6.5 MeV 0.5 7.0 MeV 10⁻²⁰ 10⁻²⁰ P(M) P(M) 10⁻³⁰ 10⁻³⁰ 10⁻⁴⁰ 10⁻⁴⁰ 0.0 10⁻⁵⁰ 10⁻⁵⁰ 0 5 10 20 20 0 20 0 M Μ

Exact result: Cluster we care: k=6, Total system: A=200

T=6.5 MeV, phase transition temperature Poisson fit is very good

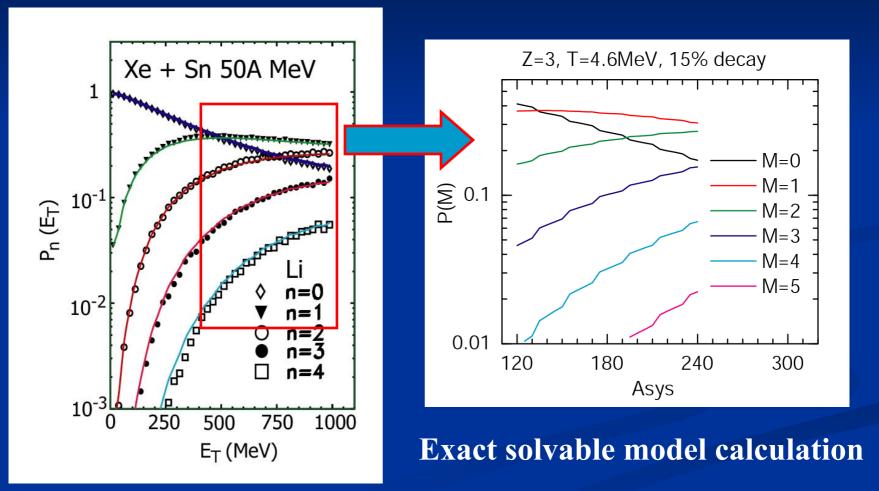
Two component system



Multiplicity distribution is Sub-poissonian at all temperature in two comp system;

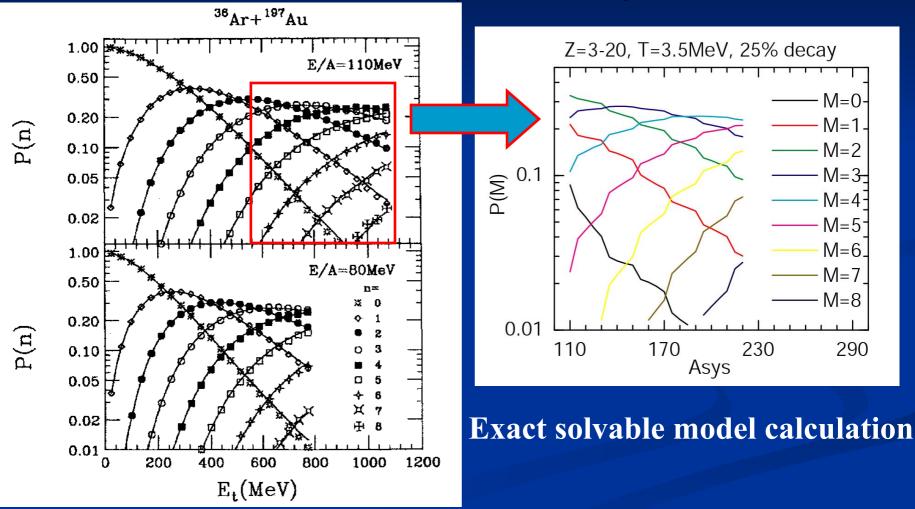
different than one comp system

Two component system: single element



Experimental data, L. Beaulieu, et al., Nucl-ex/9805003

Two component system: All IMF (Z=3-20)



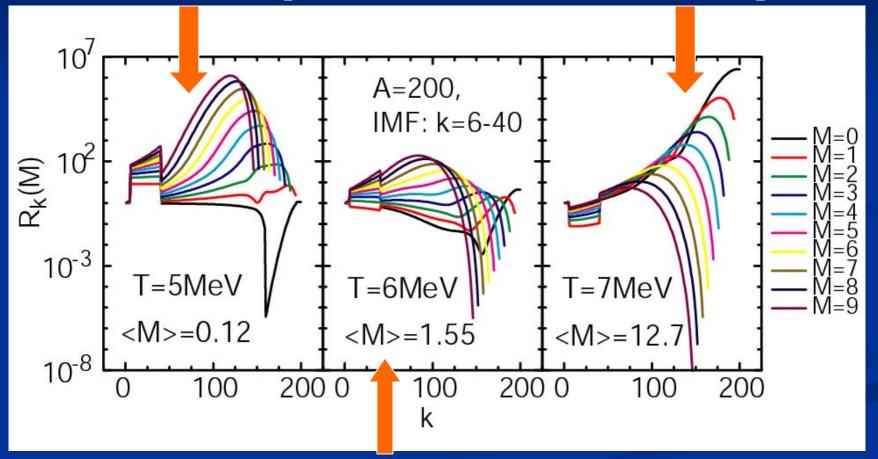
Experimental data, L. G. Moretto, et al., Phys. Rev. Lett. 74, 1530–1533 (1995)

M-gated yield ratio

$$R_k(M) = \frac{\langle n_k(M) \rangle}{\langle n_k \rangle} \,,$$

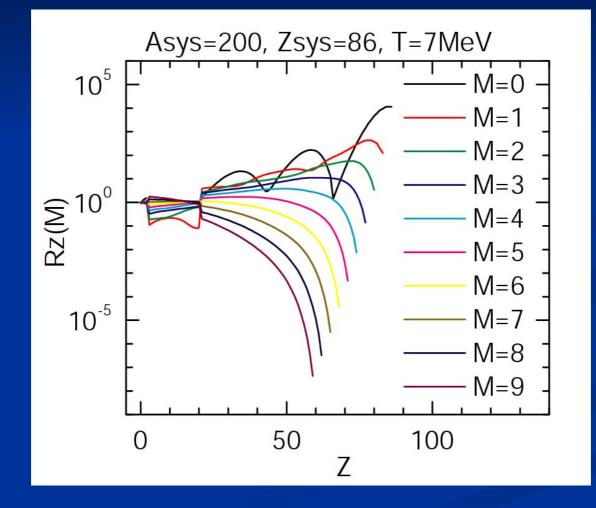
below transition temperature

above transition temperature

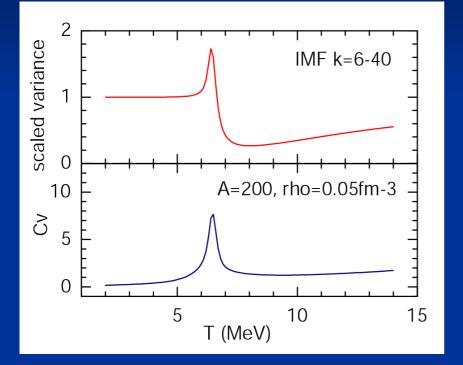


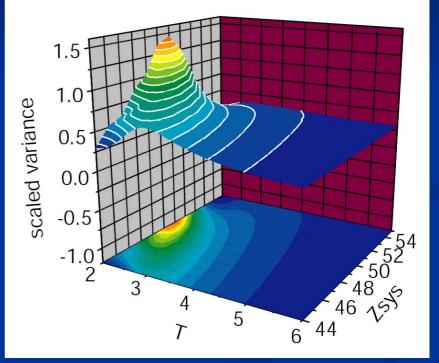
One-comp system: Close to phase transition temperature 6.5MeV

M-gated yield ratio: two-comp system



Variance: one and two component systems





One-comp system

Two-comp system Asys=100

Summary

- Iterative formula for the canonical partition problem
 - extended for multiplicity distribution,
 - include decay and feeding
- Multiplicity distribution
 - Critical behavior in one-comp system, not in two comp system
 - System size scaling
- M-gated yield ratio new signal for experiments
 - Variance and critical point
 - Complications from isospin
- Future development
 - Complete investigation in the isospin and decay effects

Formula summary

1. Partition problem: exponential large number 2. Iterative formula: calculate partition function easily **3. Blocking methods:** multiplicity distribution of single cluster and a group of clusters 4. Decay & feeding: complete solution to the multiplicity distribution

Formula summary

Partition problem

$$Q_A = \sum_i \prod_i \frac{(\omega_i)^{n_i}}{n_i!} \,\delta(\sum_i i \times n_i - A) \,,$$

Iterative formula

$$Q_A = \frac{1}{A} \sum_{k=1}^{k=A} k \omega_k Q_{A-k} \,.$$

Single blocking

Group blocking

 $\begin{array}{c} \mathbf{Decay} \\ \mathbf{\& feeding} \end{array} Q_{2}^{I}$

$$P_n(k) = \frac{(\omega_k)^n}{n!} \frac{Q_{A-nk}(\omega_k = 0)}{Q_A},$$

$$P(\alpha, M) = \frac{1}{Q_A} \sum_{A_1, A_2} Q_{A_1}(\alpha, M) Q_{A_2}(\beta) \delta(A_1 + A_2 - A).$$

$$Q_A^{D,F}(\alpha, M) = \sum Q_{A_1}(\alpha', M) Q_{A_2}(\beta') \,\delta(A_1 + A_2 - A) \,.$$